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ADVANCED TELEPROCESSING SYSTEMS

Advanced Research Projects Agency
Semi-Annual Technical Report

September 30, 1979

INTRODUCTION

This "Somi-Annual" Technical Report covers research carried out by the Advanced Teleprocess-
ing Systems Group at UCLA under ARPA Contract No. MDA903-77-C-0272 covering the period July
1, 1978 through September 30, 1979. Under this contract we have two designated tasks as follows:

Task 1: Radio Packet Switching Systems

, ,Advanced studies regarding the fundamental analytic and design considerations for random
multiple-access radio packet switching' systems. We will investigate the basic performance
measures including capacity, stability, control, routing, and the tradeoffs among these quantities
for ground and satellite packet radio systems.

Task 2: Advanced Research in Distributed Communications

Advar-:ed stu'dies in internetting, flow control, distributed access, fundamental capacity
definitions and contours, and investigation of the underlying cost-performance behavior.

We have made significant progress in the two named tasks. In the following paragraphs we
describe the progress and give pointers to those references which represent the published work resulting
from this supported research.

Fo'lowing this short summary is a list of publications produced as a result of the recent research

on this contract covering the period being ieported upon. This list contains onby those articles and
reports which in fact did appear in the published literature during this period. Papers which have been
accepted, but not yet published or which have been submitted (of which there are many in both
categories) are not listed here, but will be listed in future semi-annual technical reports as they appear
in the published literature. (Thus, the list of references here has no overlap with previous lists in our

of one aspect of this overall research, and we simply mention the other areas briefly in the following
paragraphs of this summary.

The research reported in the main body of this document discusses the performance tradeoffs
and hierarchical design of distributed packet switching communication networks. Basically it consists of
the Ph.D, wok conducted by Gideon Y. Akavia under the supervision of Professor Leonard Kleinrock
(Principal Investigator for this research). The body of this report is presented in the form of three
separate papers which collectively summarize most of the work conducted by Dr. Akavia in his
research. In the first paper, "On a Self Adjusting Capability of ALOHA Networks," we study a distri-
buted communication network in which many distributed terminals are attempting to communicate withI •each other over a common radio channe!. We analytically solve for the optimal range at which these
terminals should communicate, trading off the desire to reach one's destination within a few hops
versus the increased interference which comes when range is increased. Indeed, we find that the
optimal solution manifests an important self adjusting capability of ALOHA fietworks. In the second
paper, "Hierarchical Use of Dedicated Channels," we again consider what is an efficient organization for
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communication among a collection of distributed terminals. We consider two technologies, namely,
line and broadcast technologies. We study the way in which system cost grows with the dimensionality
of the space and with the number of terminals involved for both of these technologies. We. find that
there are great gains to be had with hierarchical designs and demonstrate these gains analytically. In the
third paper, "On the Advantage of Mixing ALOHA and Dedicated Channels," we studyj a two-level net-
work in which ALOHA is used at the bottom level (where the traffic is light and very bursty and there-
fore contention schemes such as ALOHA are efficient), and using dedicated channels at the top level
(where the traffic is relatively steady yielding efficient performance of dedicated schemes). We find that
the performance of such a system is extremely good and report upon the results analytically.

Turning now to the list of references, we comment that paper number one represents the
results of some of our earlier work on the Atlantic Packet Satellite Experiment. In this paper we
descr~ibe the measured performance of a variety of packet satellite access schemes. Paper number two
represents an invited paper in which general principles and lessons gained through our experience in the
ARPA network are delineated. The third paper gives a very nice algebraic formulation for evaluating
the performance of inter-connected packet networks; we find that series, parallel, and series-parallel
networks can be evaluated using this algebra. The fourth paper presents a very important result
describing the optimum transmission range for packet radio networks when one accounts for a finite
density of terminals; we find that the optimrum number of neighbors which should hear a given
transmissinn is approximately six, under the assumptions of our model. (In particular, the object is to
maximize throughput whereas Akavia's model covered both delay and throughput, thereby yielding
different solutions.) The fifth paper represents the Master's thesis of Mart Molle and evaluates the use
of intelligent satellites with memory; the tradeoff here is the correct number of up-links using ALOHA
per given down-link using a dedicated access mode. Paper six represents a summary of a variety of
resource-sharing ideas in distributed environments. The seventh paper describes the results of a search
for the optimal traffic matrix in a given pecket radio environment; a variety of interesting results
emerge from this which represent in some sense the limiting capacity of an ALOHA packet radio net-
work. Paper number eight continues the work related to the Urn scheme whiclý was previously
reported upon; it gives a general formulation for optimal access control. Paper number nine presents a
rather important measure, namely power, for evaluating the performance of computer communications
systems; it is there shown that deterministic rules are in many cases adequate for locating the correct
operating point for networks. Paper number ten compares circuit and packet switching; it is shown
under what conditions each of these two systems is preferable to the other. The eleventh paper
describes a mixed access scheme for packet radio channels which is a significant improvement over
ALOHA. The twelfth paper introduices a new switching scheme for computer networks which takes
advantage of the good properties of both circuit switching and packet switching. The thirteenth paper
represents the Ph.D. dissertation of Yechiam Yemini. The research reported upon in these published
articles is continuing and we are. currently investigating new areas as well.

The main report on distributed communication systems is given following this list of publica-
tions.
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Abstract

We consider a distributed communication system with many terminals wishing to communicate
with each other. When the terminals are distributed in space we must face th6 following questions:
"What scheme can control the access to the communication resources in an effective way? What
tradeoffs are basic to the design of such a communication system? What is the role of hierarchies in
organizing large communication nets? How should a !arge network be decomposed into smaller parts?
What cost versus performance gains can be P.chieved by such a decomposition?

In attacking these questions we consider two technologies - line and broadcast - and two kinds
of systems - centraited sy.stems, in which mrn'ssages originate in the distributed terminals but are directed
to one comrinon destination, and networks, in which both sources and destinations of me es are
distributed.

We assume that the traffi,. to be carried and the necessary performance are specified and that
the goa' is to minimize the necessairy cost. We define quality and burstiness and find the following:
Dedicating channcls is reasonable when the traffic is steady (i.e., not bursty), but when the traffic is
bursty the cost of simple dedicated-channel systems grows too fast with the number of terminals.
ALOHA is good when the traffic is bursty, but bad when the trufflc is steady. Neither ALOHA nor
dedicated channels are good when the traffic is of medium burstipess.

When given a broadcast channel, choosing the transmission range involves the following

tradeoff: A long range enables messpes to reach their destinations in a few hops, but increeses the
amount of traffic competing for the channel at every point.

In the first paper we calculate optimal transmission range. When choosing this optimal range,
ALOHA networks gain a self adjusting capability, which makes heavily loaded ALOHA networks far
better than centralized ALOHA systems. It is therefore harder to improve ALOHA networks than
ALOHA c: .1ralized systems; power groups lead to a smaller relative improvement, while a hierarchy of
ALOHA levels, with only a small population conterding at the top level, can improve centralized
systems but does not improve networks.

Ir the second paper we show that by introducing regular hierarchical structures the cost of
bursty systems can be significantly reduced, and that the optimal structure must be balanced. In line
systems the improvement follows from shortening individual lines, while in broadcast rsystams the
irmproveaeni follows f,'om spatial reuse.

The cost of the best bursty line system grows with the diri•nsionality oi the space in which
terminals are distributed. The cost of the best bursty broadcast V.stem is similar to the cost of one-
dimensional line systems and is independent of dimensionakity. It follows that bursty broadcast systems
have an advantage over line systems in two or more dimensions.
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Organizing a two-dimensional network imposes a tessalation on the p!ane. When using the best
number of levels, as a function of burstiness, tessalating the plane with hexagonal tiles (and forming a
triangular network of comtmiunication lines) is usually optimal.

In the third paper we show that mixed-mode systems, using ALOHA in a bottom level and
dedicated channels in a top level, can be very good for medium hurstiness since they can tiade the
amount of interference in the random access level against the number of dedicated channolb in the top
level. By choosing the right mix, such networks can become insensitive to the limitations of both
access schemes.
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On a Self Adjusting Capability Gf ALOH.A Networks

Abstract

We consider a distributed communication network with many terminals which are distributed in
space and wishing to communicate with each other using a common radio channel. Choosing
the transmission range in such a network involves the following tradeoff: a long range enables
messages to reach their destinations in a few hops, but increases the amount of traffic competing
for the channel at every point.

With the help of a simple model we analyze this tradeoff for ALOHA networks, and give Li4
optimal range. When choosing this optimal range, as a function of specified traffic and delay
parameters, ALOHA networks demonstrate an important self adjusting capability. This capabil-
ity to adjust to traffic makes heavily loadeu ALOHA networks far better than cetntralized ALOHA
systems (in which all messages must reach one common destination).

Dividing a terminu, population into power groups can improve any ALOHA system, especially
when the traffic is split between groups in an appropriate way, which we demonstrate. But since
ALOHA networks are hurt by destructive interference less than centralized ALOHA systems it
is harder to improve them. Using power groups cOn significantly improve centralized systems,
but will !ead to a smaller relative improvement in ALOHA networks.

Decomposing the system into a hierarchy of ALOHA levels, with only a small population con-
tending at the top level, can improve centralized systems but does not improve networks.

1. Introduction

Consider a large number of terminals, physically distributed over a large geographic region. If
all terminals wish to communicate with one destination we shall call the system centralized and the corn-
mon destination the station. Assuming the communication resource available is a radio channel of a
given bandwidth, how should this common channel be shared among the terminals?

If the terminals were co-located in the same place, the best way to use the channel is to form a
queue of busy terminals (i.e., those having anything to transmit) and to let them use the full bandwidth
available one after the other. Forming one queue is much better than giving each terminal a fraction of
the bandwidth, and letting each terminal queue its own messages [I].

It is no trivial matter to have all terminals form one queue when the terminals are numerous
arJ distributed over large distances. Of special interest, then, is the ALOHA approach, which invests
tio resources in coordination and control of terminals. When using the (unslotted) ALOHA scheme

each terminal transmits whenevcr it has a message ready. If more than one terminal is transmitting at
the game time a conflict will occur in the use of the radio channel, and we shall assume at first that all
messages involved in such a collision will t., destroyed. When the destruction of its message becomnes
known to the terminal it will, after a somewhat randomized deiay, retransmit the message. We shall
not specify how the failure of its message becomes known to the terminal, but assume that this

.1 -* "knowledge is free.
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Schemes based on the ALOHA idea have been extensively treated [2,3,41. ALOHA is obvi-
ously good when the system is lightly utilized and destructive interference is not very likely. When the
load is heavr a significant fraction of the transmissions will fail as a result of collisions.

The wasteful effect of collisions can be reduced if all transmissions are of the sarr length [51.
This is usually achieved by breaking long messages into packets of a fixed maximum size. In this
paper, we assume that this is always done and despite the fact that one message may result in several
packets we assume that zrrival of separate packets into our system is independent, and that the total
arrival process is Poisson.

The wasteful effect of collisions can be further reduced if time is slotted (where each slot has a
duration which is equal to a packet transmission time) and if terminals are constrained to start trmnsmit-
ting only at the beginning of a slot. The resulting access scheme is called Slotted ALOHA, and the
maximum fraction of the time slots it can use for successful transmissions is known to be l/e [61.

Let us choose the data unit so that the average length of a message is equal to 1. This is simply
a convenient normalization, which is equivalent to measuring communication capacity in messages (of
an average length) per second, instead of measuring in bits per second. The throughput-delay perfor-
mance of the ALOHA schemes is not described by a simple analytic expression [31. For simplicity we
shall use the following ad-hoe expression to describe the performance of the ALOHA schemes

(I
C C-eS

Here T is the average response time of the system and S is the system throughput (messages per slot).
We shall assume that this expression describes the optimum envelope of slotted ALOHIA and unslotted
ALOHA performance curves. (For S--0 it describes unslotted ALOHA, for S/C- Ile it describes
slotted ALOHA.) Equa.ion• (I) is a simple two-parameter approximation, that reproduces the known
behavior when S-0 ano when SIC-l/e. For a similar three-parameter approximation see 1151.

Assume that the throughput S and the acceptable delay T are specified, and that we seek an
access scheme that will minimize the necessary system capda.ity C. For most purposes it is sufficient to
specify the communication needs by the dimensionless product ST, %hose inverse we shall call bursti-
ness [7,16,171. We shall define the quality [71 of an arbitrary access scheme as the inverse rat-o
between the caiwcity necessary when using this scheme and the capacity necessary when using the best
possible scheme, in which messages form one queue and share one channel. When messages arrive
independently and their lengths are exponentially distributed the best scheme is the M/M/I queue, in

ST+1which we have C-SS+ lI/T. The quality of the the ALOHA scheme is therefore simply ST+I WeeST + 1
see that the ALOHA scheme then has a quality of I when the traffic is very bursty (ST<< 1), i.e., it
needs no more capacity than the M/M/i sAeme, and a quality Ile when the traffic is very steady
(T >> D).

ALOHA systems with large populations have stability and control problems [3,8,91, but in the
spirit of maintaining thL simplest poss-ble approximation we shall not deal with them.

In the centralized system described above, all messages hiive one common destination, even
though their sources are distributed. When the traffic to be carried is between many terminal pairs we
have a different problem, which we shall call the network problem. That is, in a network, both the

J •sources of mesages and their destinations are distributed.
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In describing the centralized system we have implicitly assumed thai all terminals can transmit
with enough range to reach the station (i.e., we are not power limited), and that transmitting directly t3
the station is the best policy.

If the transmission range is not enough to span the distance from source to destination, the
message will have to be received by some intermediate node and relayed towards its destination. That
is, a message may need more than one hop in oro,-r to reach its destination. The intermediate node i.i
often called repeater.

We have assumed that the centralized system is a one-hop system, but we shall explicitly treat
the question of transmission range in networks, since it introduces .an important tradeoff: a short
transmission range makes more hops necessary, but reduces the interfering traffic. We shal see that
choosing an appropriate range, as a function of traffic charrcteristics, will lead to the self-adjQstung capa-
bility referred to in our title.

In section 2 we analyze networks assuming that the range of every transmission can be perfectly
adjusted. In section 3 we analyze networks assuming the range of all transmissions must be equal. 1ýi
section 4 we introduce the idea of power groups and show how it improves ALOHA systems. In sec-
tion 5 we analyze hierarchical organizations of ALOHA systems with many levels.

2. Adjusting the Transmission Range
We assume that the transmission policy of all terminals is chosen to optimize the overall net-

work performance. In ordei to analyze the tradeoff between range and interference we need a detailed
model. We shall assume that our network covers a region of space that is large enough to make edge
effects negligible. We shall also assume that terminals are placed everywhere with the same density,
and that the terminal density is very high, so we may make all calculations as if we had a continuum of
terminals. Other assumptions we adopt are [7]:

(I) The rate of traffic exchanged between any two small geographic areas depends only on the size
of the areas and the distance between them. The rate does not depend on the identity (i.e.,
location) of the areas or the direction from one to the other. That is, our network is homo-
geneous and isotropic in its statistical properties.

(2) The access scheme used is slotted ALOHA. That is, we ignore the fact that the synchroniza-
tion necessary for slotted ALOHA is hard to achieve in a network with long range transmissions
and partially overlapping ranges.

(3) The terminal's antenna is simple, and the signal propagates equally in all directions.

(4) A transmission will not be bothered by other transmissions that are not within range of its (pos-
sibly intermediate) destination, but will be destroyed by any simultaneous transmission that
takes place within range of its destination. A transmission will be successful whenever it is the
only one within range of its destination. That is, we assume a d-finite range, beyond which nc
interference is felt. This is, of course, an abstraction of the real world, in which both success-
ful reception and destructive interference are probabilistic events.

, Consider a given terminal with a rate of s messages per slot destined to another terminal. A
transmissioi ,ail! be successful only if there is no other transmission with enough range to interfere

.with it. Our tern;nal will have, therefore, to offer a total traffic of g messages per slot in order to
succeed at v. rate s, ,cre g includes retransmissions of previously unsuccessful mesages. Let G be the
total offered traffic oet slot heard at the destination. Assume that G is created by an infinite population

3
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of terminals, and that the amour!' contributed to it by overy source-destination pair is a Bernoulli pro-
cm~ independcrit or the tralfic offerea by tiny other source-destination pair. Returning to our given ter-
minal, whose. contribution to G is minute. we must have s - ge-G, where Cc is simply the probinbil-
ity that no other message is transmitted in Cie slots used by oul, terminal. Summing over all tranhmis-
sions heard at our destination we get

GC~ (2)

where S, denotes the total traffic successful at its destixation and heard at our destination. This total
traffic consists of messages with many different destinations, find. the success of each message depends
or~ what happens at its desdnialion. But all these meLsaages contend with~ our transmission for the. use of
the channel around our destin~ation.

Equation (2) looks exactly like the equation describing a centralized slotted ALOHA system
16). G an.d S, do not, of cot,'rse, depend on the transmission in question, and we can therefore say that
any transmission sees an ALOHA system at its destiratibn with o throughput equal to S,. where the
subscript on S, stands for contending. If we unnormalize S,. and measure it in ntessages per unit timne,
we may use (1) and write the average delay per hop suffered by any message as follows:

In the centralized case, interfercnce always destroys both messages involved. in the network case
analyzed here this is not necessariiy true. Since the ranges of the tiansmission involved and d*ieir desti-
nations may be very different, a collision of two messages at the first's destination will destroy the first,
but may not bother the second at its destination. We zhalI use (3) for the delity in ALOKA networks,
even though what happens at each destination is not equivalent to a closed, centralized ALOHA sys-
tamn; this is supported by [101 where the optimal transmission policy for ALOHA networks, given the
hearing matrix, is shown to be identical to the optimal policy in rentralized ALOHA systems. How-
ever, our goal here is to choose the optimum hearing matrix by choosir~g the transmission -arge.

The discussion so far applies to any network which is homogeneous m~d isotropic in a statistical
sense. To be mofe specific let us assuine t1hpt the terminals aie distributedl in an iqrn/.Ine two-
dimensional region. That is, in a region whose size is much larger than the typical distance travelled by
messages, so that edge effects can be neglected. Let S be the total traffic o.-oming out of a unit area, and
let f(r) be the traffic density. That is, the traffic going fromr o~ie small (source) aren dA,, to another
small (destination) area dAd is given by f(r)dA~dAd, where r is thie diutance between the two ,mall

areas. We obviously nave S- f f (r)2irrdr and f (r)2',rS is thetefore the protabiaity densi~y function

for the distance travelled by a message. N, the aveirage distance travelled by mesviges, is given by

N - f rf ()2irrdr. To calculate S,, the, total traffic contendirig a! any destination, consiL. . lsa~

that must travel a distance of between rand r+dr. 11 will be heard at h g`,ven destirxiion if it starts any-
where within it cirt;le with radius r aroim-d that dosiinatiort. We can thien write

S., - f vZf(r)27rrdr , rSW' i4)

Where NT is the second moment of the distance travelled.

eatyAssume now that the transmission range is ch~osen in such a way that every message -will have
eatyenough range to reach its dcstiniati3n in one hop. Substituting (4) in (3) we see that an

ALOHA network in which eve-y n!',ssage reaches ft~s destination cxactly in one hop has the same Jtelay-
capacity relblionship as a -entralized ALOHA 5:/stern carrying a tota' traffic ifSN7
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The simplicity of (4) is a result of the assumption that power can be adjust•l exact& to reach
the destination. Two objections r-n be ra;sed to this assumption:

(I) Will a terminal always have enougih power to reach its destination in one transmission?

(2) Will the terminal have the capability to exactly adjust its power, and will ' !-"w the distance to

its dustination, on which this adjustment should be based?

These two objections are e€pecially important in the environment of many cheap motile termi-
nals, which is exactly the environment which makes the ALOHA idea attractive.

We shall treat these objections later, but let us now ask another question: even if we can adjust
the range so as to exactly reach the destination in one hop, is this a good policy? In P 11 the question
was posed thus: should we take giant steps, assuming we :,an? It was shown there that if, for a given C
and traffic requirement, the delay per hop grows without bound as a function of the step size R, then
there is an optimal step size, and steps should not be giant. We wish to find the optimal rare. pollsy as
a function of traffic requirements, and for this we need the following:

Th-,orem I: If a message must travel a distance X in k hops it shou!d, in o-der to make. the best use of

the communication resources, do so in k equal ixýpR, ep.ch of ieniý,h K/k.

ProoJ.f Whether we want to minimize T when S and C are given, or to minimize the neiessaiy C when
S and T are given, we must, in order to get the best system minimize %he totul contending traffic at
each de.tination. But this is equivalent to minimizing the total area at which a given message is heard.
Let XK be the size of the i-th hop, where L X, - X. The area in which our mesT.sge is heard is propor-
tional to the . XK2. Minimizing the area at which our message is heard ia therefore the following sim-
pie problem of constrained minimization:

Minimize L X12

subject to I X, - X
The solution of this minimization problem gives the equal step resuit stated i,,i the theorem.

0

Let us now consider the fodlowing family of policies which us- a perfectly adjustable but limited
transmission range: Given the mnximum range R, the path of every message will be divided into the
minimum number of equal h.ps. Which R will give the best overall system performance? Should we
try to make R as *a,-ge es posea-tle? To answer these qucstions we must determine how S, depends on
R. Writing •', as a function of R and the distribution of the distances travelled is a straightforward but
cumbersome operation. However, the following bounds are simple to obtain:

Since S,(R) is a monotonic increasiRg function of R, an obvious bound is5,(X )4S,(-)-wrST' . When R is very large all messages will reach their destination in one hop, s
the equality here follows from (4).

Another bound, especially useful when R is small, can be obtained as follows: The total area
covered by the several transmissions of a message that has to travel a distance r can be bounded from

* above by L-rR2 and Sc(R) can therefore be bounded by

S,(R; L -- rR2f(r,2vrrdr - irRNS (5)LfR
Fig. I shrws th" tw' bounds a.vd a hypothetical S,.(R).

5



iS

frSNR

A HYPOTHETICAL Sc

R

Figure 1. Two Sounds on Sc., the Total Successful Traffic Contendlnj at Each Point.

We shall ass.n;ie that the traffic to be carried is Wpcif•d, that an acceptable delay is specified
and that the goal of a good design is to make the necessary bandwidth as small as possible. The
specification can bW suammarized by the dimensionless quantity N2ST. When NZST<< 1 Vie call the
network, and the tasffic, bursty, and when N2ST>> I we call the network steady.

For small R we can use the bound of (5),as an approximation for S((R), and we will combine
it with N/R as an approximation for the average number of hops per message, to get the following
approximate expression for the delay

C -eirSNR

Inverting we get

" C - e#rSN(R + I N (6)
TR

and from this approximate txpression for C we can get that the optimal R (i.e., the R that minimizes

t 6



the necessary C ,"or given NS and 7) is given by

R I
N 7 XrN2 ST

While we use the terni optirral X, ,quation (7) actually determines the ortimal value for the marimrmn
transmission range. Given the distance a specific message must travel, R determines the necessary
number of hops,, and the transmission range of all hops is then ciiosen according to Theorem I. TIV.
capacity necessary when using the optimal R can be obtained from (6) with the use of (7); it is given
by the following relation between CTand N2ST, both of which are dimensionless quantities,

CT - 2VeirN2 ST Is)

When the traffic is very steady (i.e., when N 2ST>> 1) (7) says that the optimal R will be much smaller
than N. The approximations made when writing (6) are consistent with this result, which is also qite
intuitive: Consider a steady system with a given S and a large T When we are willing to tolerate a large
T the number of hops can be large, and we can therefore choose a small R. Each message will th. ý.
heard only in a narrow strip along its path, so S. will be small, and the necessary bandwidth will thi'e-
fore also be small. When the traffic is very bursty we get from (7) that R is much larger than N. This
is again very intuitive - when the traffic is bur3ty there is little contention and therefore almost nottiLng
is gained by forcing a message to undergo more than one hop. But the exact value given by (7) is not
meaningful when the traffic is bursty, because the approximations used when writing (6) are not %slid
when R is large.

A general conclusion that emerges is that in a two-dimensional network it is better to limi. the
transmission range even if our terminals can adjust their range exactly and have no power limitation.
This voluntary limiting is especially important whei, the traffic is very steady, and the optimal range limit
R is then given by (7).

How shall we define the quality of networks? Clearly one should not compare a network to one
huge centralized M/M/1 system that carries all messages to one common destination because practical
networks have an advantage over centralized systems: The same capacity can be used in different
regions of the network to successfully transmit different wrrssages at the same time. That is, network
capacity can be spatially reused.

A common measure used to characterize access schemes is the maximum utilization they can
make of the given communication resources. This maximum utilization is sometimes called capacity,
especially by authors whose variables are normalized by the slot size, and who therefore do not expli-
citly mention the channel bandwidth. We use the word capacity to describe an amount of communica-
tion resources (i.e., the number of bits or messages that can be transmitted per second) and utilization
to denote the useful fraction of that capacity.

The quality of a very steady centralized system, as defined by us [71, is equal to Its maximum

utilization. But utilization is not a good measure for networks with a continuum of terminals since util-
ization can be arbitrarily increased by spatial reuse, i.e., by limiting the transmission range.

It seems that every network organization must address the question of how to coordinate every
transmission with at least all the traffic that is heard at its destination. Since the best poulble system
will coordinate this traffic perfectly, we shall compare all networks to the network that uses the same
technology (i.e., omni-directional antennas) but that somehow achieves perfect coordination between
the traffic contending at every point, and in which transmission ranges are chosen optimally. We shall
define the quality Q of any network to be the inverse ratio between the capacity necessary for it when S
and T are given and the capacity necessary in the M/M/ I network for the same S and T In general
QK<I, and equality holds only for the M/M/I network itself. The capacity necessary for this

.~V 7



best possible M/M/I network scheme is in general a function of S, T and the distribution of distances
travelled. For very steady traffic we get, in analogy to (7), that the optimal R is given by

R I(9)
N r.N7i'ST

and when using this R the capacity necessary is

CT - 2V'r- ST (10)

Dividing (10) by (8) we get that the quality of heavily loaded two-dimensional ALOHA network with
the optimal step size is l1/4e-.607! How did we get this dramatic improvement over the heavily
loaded centralized ALOHA system, whose quality is l/e-.367?

We may say that every message sees at its destination an ALOHA system whose utilization,
which we shall call local utilization, is S,/C. When the traffic is very steady and when the optimal R is
used we get from (7) that every transmission see3 an ALOHA system whose local utilization is 1/2e,
i.e., half the maximum possible utilization of an ALOHA system. The quality of o centralized ALOHA
system with this local utilization is .68. It is only at much higher utilizations (closer to Ile) that the
quality of a centralized ALOHA system goes down to lie. The need for several hops will bring the
quality of the ALOHA network down, from .68 to .607. We see therefore that by choosing the optimal
R as a function of burstiness our ALOHA network has gained a self-adjusting capability, and it will not
allow itself to be pushed to higher loads, where it is really bad.

From (8) and (10) we see that two-dimensional networks with the optimal R show an economy

of scale when very steady: for a given T, the necessary C grows only like -IS-.

Comparing (7) and (9) we see that the optimal transmission radius R in a steady ALOHA net-
work is smaller than the optimal R in an M/M/I network by a factor l/,'e. The optimal R in both net-
works goes to zero as the traffic becomes very steady. We have implicitly assumed that there always is
a terminal at the end of the hop that can receive our message and forward it. But if R becomes too
small there may not be a terminal so conveniently situated. If R becomes even smaller, our terminal
may not be able to communicate with any other terminal, and the network may become disconnected.
Kleinrock and Silvester 1121 treat this issue explicitly, wh~ie calculating the optimum transmission range

with a different objective: obtaining the maximum throughput from the given channel, assuming
infinite delay is acceptable. We shall not treat this issue here, but our assertion about the self-adjusting
capability of ALOHA networks must be qualified.

Consider once again an ALOHA network and an M/M/I network, both carrying the same very A
steady traffic. If it is practical for the ALOHA network to choose the optimal R according to (7) then it

will need only v'" times more capacity than the optimal M/M/l network, i.e., its quality will be l/fe,.
Sti, -I R cannot be made so small, the quality of the ALOHA network will go down. If the ALOHA
network is !,cnqtrained to use the same R as the optimal M/M/I network then its local utilization will
be 1/(e+1),-.269 and its quality will be 2/(e+l)-.538. If both the ALOHA and the M/M/l networks
carry a very steady traffic hut tare constrained to use an R that is much larger than the one given by (9)
then the local utilization of the ALOHA networkand its quality will be Ile.

Fig. 2 sketches the dependence of the necessary capacity on the transmission range, in the
two-dimensional ALOHA and M/M/I networks.

Our treatment of two-dimensional networks can be summrized and generalized to
,l n-dimensional networks as follows:

!I





Theorem 2: Consider an n-dimensional ALOHA network carrying very steady traffic, where n > I.
Assume that the transmission range can be perfect'., adjusted, but only up to a maximum range R. If R
can be optimized freely (i.e., made as smJl os necessary) then each transmission will see an ALOHA
system whose local utilization is l/ne and the network quality will be l/el/a.

Proof The volume of an n-dimensional sphere with radius R is vR , where v is a constant depending
only on n (when n-2 Y-w). Theorem 1 will be valid for any n> 1. That is, if a message must travel
more than R it should do so in the minimum number of equal hops. In analogy with (5) we therefore
get

S S,(R) <, vSNRR-l (11)

When the traffic is very steady and when R <<N this bound is a reasonable approximation for S, and
we get the following estimate for the capacity necessary when S and Tare given:

C - evýSNRn-I+ _L (12)
T R

The R that minimizes C is given by

R ST(n-l) (13)

and using this optimal R we fin6 that the capacity necessary is

C - AnevSTln-l)*-n (14)

For that n-dimensional M/M/i network we get a set of equations very similar to (12)- (14), but in
which 1 is substituted frx e. (Compare for example (8) and (10) in the two-dimensional case.) From
(13) we see that the optimal R in an n-dimensional ALOH'A network is smaller than the optimal R in
an n-dimensional M/M/I network by lIel/". As long as this smaller R is consistent with our model
we can derive from the dependence of C on e shown in (14) the quality part of the theorem.

The local utilization is, by definition, equal to

S, vSNR '

C C

and substituting (13) into (15) we find that when the optimal R is used the local utilization is l/ne.
[J1

Theorem 2 can be immediately generalized to the situation in which the antenna carried by ter-
minals is somewhat directional. Assume the antenna radiates into a cone, which takes a fraction a of
the sphere. This is, of course, a gross simplific&tion of the real radistion pattern, but is consistent with
our simple modeling of transmission range. If we compare the case of an omnni-directional antenna to
this case of an a-directional antenna we find that, with any transmissior. policy, the total interfering
traffic at any point is smaller by a factor a. The optimal R for steady traffic, given by (13), will become
larger by I/aI'" (we shall not have to push so-much towards small R), and the necessary capacity of
(14) will become smaller by a'/'. But when we compare an o-directional ALOHA network to an
a-directional M/M/l network we find that the local utilization and the network quality in the optim-
ized structure will remain as stated in Theorem 2. An improved technclogy (i.e., directionality) will
help both the ALOHA network and the M/M/I network. But whenever they use the same technology
a comparison between them will show the inherent cost due to the random access aspect of the
ALOHA network, and this inherent cost is e'/"

10
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In Theorem 2 we assumed n > 1. The reason for this is that Theorem I can be geinwalind only
for the casn n > I.- When dealing with a one-dimensional ALOHA network we get

Theom'm 3: Sr, the amount of contending traffic heard at a point, is equal to 2N5. and is huA'misme

both V, the aceed to break message paths into several hops and of the policy of mlnweenmtlng such a
break, Rs long as the policy is applied everywhere in the same way. That Is, as long as A message path
or a given length will be broken in the same way, wherever it originates.

Proof Consider a message that must travel a distance X, arid let X1 be the length of its i-th hop, where
L A', - X' The i-th hop will be heard at a given point if the path of the. message is so placed that the i-
th hop starts within A', of that given point, on either of its sides. Adding the contribution of all the
hops we see that a message whose total path length is between X' and X+dX will always contribute to S,

an amount proportional to 2X. In this one-dimensional network we have S - f &x d and

N,1**x dx) . S, is therefore given by ScJ xfJx dx2
S 0

0

In one-dimensione'l rmtwcrks, if range can be perfectly adjusted we should, therefore, giant-step
whenever possible. Even when the traffic is very steady there is no -.ason to limist the step size, since
no decrease in S, will follow One-dimensional ALOHA networks have a local utilizatimr and a net-
work otiality both of which are equal tc I/P.

Theom-m 2 answers the c(4uestioIn of the optimal transmission range when the Atraffic is very
steady. This is satisfying because ALHA has an efficiency problern exactly when the traffic is slead",.
When the traffic is bursty there is little need for improving the ALOHA netwock. When range is Per-

* Cectly adjusted th, range limit R grows when the traffic becomes bursty, and when the traffic is very
bursty giant stepping i,: the best (for all nt). That is, each -nessage should be transmitted with enough
range to rea,,h its destination directly (in one hop). These general conclusions change once we consider
networks in whi-h ;-ange cant~ot be perfectly adjusted- as we shall n~ow do.

3. Using A 1ked Ratige

As~umte that tu~rminals cannot adju~st the range of their transmissions, and that all tranamis-
sions, by all terminals, must have a fixed range R. Since the range of all ttane-missions is fixed and con-
stant, some r. 'essape9 wil) overshoot f1wcr destinations. The amount of traffic contending at every, point
will therefore be l-egc'r niow flhar, it wits *'hen range was perfectly adjv",tecl. S, will depend on R in a
way that involves thu Jistrihution of distances travelled by a messa~ge, but the following bounds are
simple to obtain:

In at '-dimensional ALOHA network

~R IS4 (5, (16)i i because at every point we hear at least the first hop of all messages originating within R. In analogy to

I ~ because the average distance actually travelled by a message when Gie iransmission range is predeter-
mined at R is at most R +N.



From (17) we get the following:

Theorem 4: When the traffic is very steady the transmission range that is optimal when all transm~s-
sions must have the same predetermined range is equai to the optimal maximum range when range can
be perfectly adjusted.

froo. When 1he traffic is very steady and R is small, tne bound of (17) is a good approximation for
S$(R). Using this expression for S, we can continue as in the proof of Theorem 2.

This theorem is very intuitive: When the optimal step size is small, the capability to adjust
transmission range is not important, since the overshoot will be small.

It immediately follows that tLe network 4uality and the local utilization that were used i:,
Theorem 2 to characterize the optimal network for very steady traffic when tLe range is perfectly adju-
stable will also characterize the optimal network when the range must be predetermined.

When the range is perfectly adjustable the one-dimensiona! network was a special case, in which
giant stepping was appropriate. When the range must be predetermined we see from (16) that S,
increases vith R. When all transmissions have a range equal to R it must, therefore, be limited evei in
the one-dimensional network.

When the traffic is very bursty (NnS? << I) we expect R to be larger with respert to N, and
shall then use the bound given in (16) as an approximation for S,. When R is large we ale, assume no
message takes more than two hops and we approximatL H, the average number of hops taken by a raes-
sage, by

H - I +Probability (distance travelled > R )

The capacity necessary can ther be approximated by
HC - eYR S +

and the R that will minimize C is now given by solving the following equation:

nevSTR"- Probability density (distance trav-lled - R)

For a very large R it is reasonable to assume that the probability density of the distance travelled is
monotonic decreasing and this equation will then have a unique w'tution. If, for example, the distribu-
tion of distances travelled rs exponential we get the foilowing approximate equation defining the optimal

R in. a bursty sysm: RiN - ln(l/veNSTR"-).

When considering centralized systems we can say that the ALOHA scheme is good when the
traffic is bursty and bad when the traffic is steady. This statement is true in general for ALOHA net-
works too. But networks have self adjusting property - by controlling the maximum transmission range
and reducing it when the traffic is steady we can make ALOHA networks (in more than one dimension)
suffer less from destructive interference than the ALOHA centralized system.

In the next two sections we shall consider two other ideas that can improve a centralized
ALOHA system and see what they can contribute to ALOHA networks.

.12
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4. Capture, Power Groups and Partial Coordination

'n the models of ALOHA systems presented so far we assumed that in the cew of interference,
both mneamages will be, destroyeC But it' the colliding messages vary greatly iki receivcd power, the
receiver may b, able to receive the stronger one correctly even in the presence of the other, weaker,
signal. The receiver is then said to capture the stronger signal. The capability to capture some mes-
sages will obviously improve every ALOHA system. Let us first see the resulting improvemant in a
cent,-alized ALOHA system, where all messages have one common destinatior.. Roberts 161 proposed
and analyzed a capture model in which the power differences resulted from different distances to the
common destinations. Our approach is different. We shall assume that the terminal population is split
into two groups, that one group is transmitting with more power than the other, and that this splitting is
purposwiy done in order .o improve system performance. In order to abstract the geometric details out
of the model, we shall adopt the following assumption 1131: The powe' of the two groups is significantly
different. When two transmissions from the same group occur simultaneously, they will always destroy
each other. When one strong transmission and any number of weak transmissions compete for the ear
of the common station, the strong one will always be captured successfully. This separation into groups
introduces, therefoie, a partial coordination into the random world of ALOHA.

It may be possible to achieve such a coordination between groups by techniques that do not rely
on a powe. difference between them. A distinctive preamble, for example, may allow a terminal to
suct'ssfully receive a transmission frorm one group, which we shall calP strong, even in the presence of
transmissions from the wepk group. In a system which is not perfectly slotted, the first of two interfer-
ing signals of equal strength to arrive at a receiver may survive the collision and be successfully
received From now on strong and weak should not therefort be taken literally - they do not neces-
slrily refer to transmission power, but simply characterize the group of transmissions likely to win or
lose when competing with the other group.

What will be the resulting improvement if we introduce groups into a heavily loaded ALOHA
centralized system',' If the strong group is veflish it can ignore the weak group, and use the channel as
much as pm)ssible. The strong group will then successfully utilize I/e,-.367 of the slots, and will leave
.367 of the siots ifrec. (In addition, .276 of the slots wilt be wasted on collisions). The weak group can
utilize at most I/e of what is left freo for it, i.e., it can utilize l/eZ'-0.135 of the slots, and the total
rate of success by both groups will be 0.503.

The channel can be better utilized if the strong group will no t be so selfish. To see this let usnow consider the division into groups as a design parameter.

Assume that we have an infinite population of terminals, and that each terminal contributes
only a minute traction of the total traffic. While we have spoken of strong and weak terminals, the
important design question is nol the identity of terminals in each group but the portion of the traffic in
each group. If we have an extremely heavy load our goal is to find the division into groups that will
allow our system to utilize the greatest portion of the communication resource available. Let G, and S,
be the total offered traffic and the rate of success of the strong group, G2 and S2 the corresponding
values for the weak group. For simplicity we shall assume in this section that S and G are measured
per slot size. Using our standard assumption, that the total traffic offered by a terminal is a Bernoulli
process, independent of the traffic offered by all other terminals, we can write

S - G, e-G

S G2 eG2 e- G

Choosing GI and G2 in order to maximize S=SI+S 2 we find that the utilization of a system with two
groups is

;' . "k13



- 0.531 (1i)

and that this u.ilization is achieved when

Si 1- - (19)
S2

The above treatment can be generalized to many groups. Assume that the terminals are
divided into r progres8ively weaker groups where the following is true: A message will never be both-
ered by transmissions frem weaker groups, and will always be destroyed by transmission from its own
group or from a stronger group. We then have:

Theorem 5: Let V, be the maximum utilization of a slotted ALOHA system whose infinite population
is optimally divided into r groups, with the above assumption on immunity to some cases of interfer-
ence. Then V, satisfy the following recursion relation:

V,+1 - e- (20)

Proof. In analogy to the two group case we can write

S, - G, e-' (21)

$2 -= G2 e-G e-G

G-G•

V, is obtained when S-Si+Sz+...+S, is maximized by varying the G,. Since no transmiss.ions from
weaker groups will ever influence the strongest group we can optimize their throughput separately, and
(21) will then reduce to

-G

S, - G, e (22)

2 +.. + S, - I,_ e

The optimal Gt is then easily foutnd to satisfy GI I- V• - , and substituting this C1 into (22) we get
(20).

The sequence V,, whose first portion is shown in Fig. 3, is a monotonic increasing sequence
converging (slowly!) to 1. This is not surprising since when we have a large number of -..oups most
collisions will be between messages from different groups, and one of the messages will be successful.

Having a large number of groups with the clear separation assumed in Theorem 5 may be
impractical. But having two groups is reasonable, and we shall discuss this case in some detail.

Eq. (18) gives the maximum utilization of a two-group ALOHA system, What will be the delay
in this system? Returning now to our custom of measuring S in messages per unit time (and not per
slot), we shall model the delay by

T ,/ Sý+
C-CeSi + -C_ 1.52

. where G, is given by St -Ge
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This expression for T is a weighted sum of two de!ay terms. The firse term corresponds to the
delay in the strong group, (which can ignore the weak group and that behaves like an ALOHA system
with capacity C and traffic S1.) The communication capacity available to the weak group is ce-GiGc

since this is the portion of the channel left unutilized by the strong group. The second term
corresponds to the delay in an ALOHA system with this reduced capacity carrying a traffic S2.

With a given C and with a given total traffic S-SI+S2 , which SI and S2 will give the roinimum
Maely? The best S, And S2 as a function of load can be found numerically: Fig. 4 gives the quality of

the two-group ALOHA system thus optimized. When the system is only lightly loaded, Sa/S2 is only
slightly larger than one. When the load grows this ratio also grows, and when the system is driven to
""•s maximum utilization SIlS2 goes to e-l, as given by (19). Also shown in Fig. 4 is the quality of aI two-gr-oups system in which the ratio between S, and S, was always chosen by (19), which is the
optimal choice at heavy traffic. We see thet the Improvement gained by optimizing the ratio between[ .- S, and S2 as a function of load is niaglgibl,, and that a very good two-group centralized ALOHA vys-
tern can be obtained by simply splitting the terminal population so that the traffic contributed by the

is
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strong group is e-I times the traffic contributed by -the weak group.

Until now we have applied the idea to partially coordinated groups (i.e., power groups) to cen-
tralized ALOHA systems. How can it be applied to networks? In our analysis of ALOHA networkr we
have used the transmission power to control range. We shall now assume that the division Into grnuup
is done by means which are independent of power so that transmission range can still be freely chcajn.
We shall also assume that the policy of assigning transmission power is independent of position, and
that the density of both strong and weak sources is high and uniform.

One simple way to improve ALOHA networks by using groups is the following: The same
transmission range will be chosen for both itrong and weak transmissions, and the partial coordination
between them will simply improve the local ALOHA system. Frorn (18) we get that the maximum
local utilization of a two-group ALOHA system is 0.531. Substituting this in (8) we see that by wang
wogroups with the same range the quality of a two-dimensional network can be improved from
/.36 7-.607 to V5.3[f-.729 . In one-dimersional networks the quality is equal to the local utilizaLtion

and ising two groups will improve both from .367 w. .531.

We see that since networks of high dimensionality are less sensitive to the limited utilization of
the ALOHA scheme it is harder to improve them by introducing a better scheme.

"The capability to divide terminals into two partially coordinated groups can lead to a greater
improvement of ALOHA networks (in two or more dimensions) if transmission range is chosen
indep-ndently for the two groups.

Let us consider a two-dimensional network and assume at first that the average ., 30ince
travelled by tronsmissions from both strong and weak groups is equal to N. We shall also assume t0 t
if a message needs more than one hop then all of its hops will be strong or all of them will be wo,
Let S, and S2 be the traffic density of the strong and weak group, and let T, and T2 be the av.,age
delay suffered by messages from the strong and weak groap respectively. In a heavily loaded system., if
the strong group is ab3clutely selfish it will utilize the full channel in the way best for it and we ther,
get from (8) that T. and S, satisfy

T, - 4e-. S1• (23)

The local utilization of the strong group, when optimiihed for heavy traffic, is 1/2e. It is easy to calcu-
late that the sWrong group leaves then a fraction b-.793 of the time 0Iots unused, and these slots are
available for the weak group. That is, the capacity available to to weak group is bc. Using (8) we get
that

N 2S2
T2 - 4evr- (24)

T, the message delay averaged over all messages, from both groups, is given by IS - T1S, + T242 , and
our goal is to minimize T by choosing SI and S2 subject to S I+S 2-S. It is simple to see that T is
minimized when S1/S 2 l1/b2 - 1.261 and is then given by

T - 4w N (25)' 1 + __C2S (

, .'• The quality of this two-group network is therefore 1 -(l+b2)l/e .774.
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Can this result be improved if messages from the two groups will not travel the same average
distance? Let N, and N2 be the average distance travelled by messages from the strong and weak
group, respectively. Substituting N, for N in (23) and N2 for N in (24) we have T, and T2. Our goal
now is to minimize T subject to NIS, + N 2S 2 -NS and subject to S, +S2-S. It is easy to see that T is

NISi I
minimized when 2  b2  1.261, and that the minimal T is given, once again, by (25). That is,

the added flexibility of giving each group of messages a different average distance does not lead to a
better network!

It is interesting to note that but $2T2 b = 1.261. That is, we can choose the

ratio between T, and T2 at will (by adjusting N1/N 2) but the contribution of the strong and weak group
to the average delay and to the average number of messages in the network will always, in an optimized
system, be in a fixed ratio.

Let R1 and R 2 be the maximum hop size in the strong and weak group. Using (7) we see that

when T is minimized R2- b - .793 That is - the strong group carries much more of the traffic, and

even though it has more bandwidth available, it uses smaller hops.

When choosing SI,S 2 ,NI and N 2 in order to optimize the two-dimensional network with two
groups, we have assumed that the strong group is selfish. But we saw before that a better overall sys-
tern can be obtained If the stfong group is not absolutely selfish, and does not use the channel to its
utmost. How conside-,Rte should the strong group be in a network?

The average delay in the strong group can be written (when NI>> R 1) as

C-e1rRINS

Here we cannot use (8) because when the strong group is considerate it will use a smaller range R,
than the range used by a se!fish group.

The weaker group does not bother anyone, and should use what is available to it to the utmost.
Let b denote, once again, the fraction of capacity available to the weak group. (b is now a design vari-
able, pIMametrizing the amouýt of consideration shown by the strong group). To the weak group we

i N2 S2can apply (8), and we then get T2 - 4er 2C-2 . Our goal is to minimize ST-S,T1 +S 2 T2 by choos-

ing Si,Ni,R3 ,S2,N 2 and R 2 subject to SI+S 2-S, SIN;+S 2N 2-SN. When choosing SI,NI and Ri we
also determine b. To see this let us denote by G the total traffic (per time slot) offered by the strong
group which is heard at any given point. G can be determined by equating thl- following two expres-
sions for the success rate of strong messages at ,any local ALOHA system: Ge-= ,rR INIS:/C. b, the
fraction of time slots left free by the strong group, is given by b - e-. T obviously depends on
St,N1,SI and N2 only via the products SIN) and S 2N2. The results of clioosing the best SIN, and
S2N 2, for a given R;, .:an be most simply written in terms of G

T e IG
C2 4EfeOe -GII-e -0 + e-2G

Tht G which minimizes Tcan be found by numerically solving the equation dT/dG-O, and is given byS, ,G - .1719 . 6 is then equal to e-1- .836 and the quality of this beat two-group two-d-'mensional net*-

work is then .782. In this network, with a considerate strong group, wi have N1S1IN2 S 2 - 1.380 andSRK2 "0.704 Comparing with the selfish case we see that consideration leads to an overall
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improvement even though the considerate strong group carries more of the traffic, moves with smaller
steps and uses less of the channel relative to the weak group.

For a summary of the optimal range and the necessary capacity in various two-d&-nensional nt-
works see Table I.

Table I

Best Transmission Range and Needed Capacity for Two-Dimensional Networks

Organization Range [Capacity
M/M/I P0
ALOHA (one group) .607Ro j .64 7CcALOHIA (two groups. same rt'ge) .729Ro [ 1.3 3Cq
ALOHA 'two groups, separate ranges) s -0

K._______ _______considerate .782R 0o I 2.9C0

R9 S Co 2- TS/I

5. Multi-Level ALOHA

Until now we have always assumed our ALOHA systems have an infinite population. Let us
now consider a slotted ALOIIA system with a finite number, m, of eq hlly ,alkativc terminals. Assum-
ing the traffic offered by any terminal at a given slot is independent of the traffic offered by other termi-
mals or at other time slots we can simply see 121 that such an rn-terminal ALOIiA system, can success-
fully utilie a fraction of the timc slots equal to

1 26

4 The iest of the time slots will be wasted on destructive interference, or will be left unused even with
some messages waiting for transmission. This last occurrence is necessary in ant optimized system tV
ensure the fraction of slots wostcd on coll;sions is not too targe.

When m is very large, Eq. (26) states tha, the maximum utilization of an infinite population
slotted ALOHA is Ile, which is the expression we used before. But when m is finite the ALOHA sys-
tem can do better. The best case is when m-2, and the maximum possible utilization is then 1/2. One
could also ta!k about an ALOHA system with only ore terminal, that can use all time slots without any
wasteful collisions, but this case is of no interest.

In analogy to (I) we shall model the delay of a finite population slotted ALOHA system by

T - s/d (27)

where U,,, is the maximum possible utilization of an iw-te;rninal system, as given by (26).

S!;' Since ALOHIA systems with a small population have better utilization and smaller delay than
ALOIIA systems with a large population, one is led to the following hierarchical scheme: Divide the
very large terminal population into a small number of groups. Assign a repeater to each terminal
group. Each group will communicate with its repeater using ALOHA, and the repeaters will

_ _ _ _ -19



communicate with the station using ALOHA. All communications will use the full capacity of the
channel. Repeaters may be necessary in order to extend the range of transmisaion, but wt shall assume
this is ,ot a problem, and shall only be interested in introducing repeaters in order to improve system
performance. That is, to lessen the de;ay when S and C are given, or lessen the caplcity necessa3,,
when S and Tare given.

Should all groups of terminals be of the same size? To minirmize contention in the bottom
level all ALOHA subgroups should carry the same traffic, i.e., a s) •,metric bottom level is best. But
order to reduce the contention in the top level we should have as much asymmetry as ixissible.
best top level wilt consist of one repeater forwarding all the traffic to the station without any confl.-,
But such a two-level system will not help us, because its bottom level itself is equivalent to the onae-
level system we set out to improvc.

Since two-level systems are introduced in order to reduce the contention in the bottom !evtl we
shall assume that whenever two levels are better than one, the traffic is evenly divided between groups.
Gitman [141 introduced such a scheme and calculated the capacity of two-level systems. He assumed
all terminal groups can use the same channel without interference, that a terminal cannot be suixessful
when its repeater is talking to the station, i.e., the repeater cannot talk and listen at the same time, and
that a terminal may be influenced by other repeaters talking. The largest capaciiy is obtained when the
terminal is influenced only by its own repeater. and when there are only two repeaters. But even then
the capacity obtained is less than 1/2. The reason for this is the following: Let S be the total
throughput in the system. Let G be the total offered traffic in the top level, that consists of two
repeaters. G is larger than S because it includes the retransmissions of messages that have been previ-
ously transmitted unsuccessfully. In a system with capacity C the slot size will be 1/C since we have
chosen an information unit such that the packet length is one. The throughput and the offered traffic
per slot will then be SIC and GIC We shall assume that the traffic per slot onered from each of our
two repeaters is a Bernoulli process, i.e., a discrete Poisson process, which is ird!?pendent (I) of the
traffic offered by the other repeater. A transmission from a repeater will be successful oaly if the other
is not transmitting irt the same time slot. Calculating the total succ'.'ss rate in the top level we get

S- ,- 2 - (2E)
c

where G/2C is the total traffic offered by each one of the two re.peaters, ani I- -G!2C -Is the probability
that a packet suicced., In order to achieve S/C-1/2 we must have G/C-•, so that each of our two
repeaters is talking half the time. It is iraposible to feed such a tallative repeater from an infinite
population of terminals, because the rniaxirmum success rate of each of the two groups is

, ~(I-G/20)/e-. 1 4< .25.

The maximum throughput of such a two-level system is given by the followipg set of equations

S- 2i l_ Gl

C 2CJe
from which we get that the maximum S/C is equal to 0.465. So even though we cannot achieve the

•.1. full capacity o' a two terminal system we do get an improvement over a one-level ALOHA.

I_2
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We shall model the delay of our two level system by the fo'lowing ad-hoc formula
! !

T -+ I'
C-2S (C-G/2)-eS12

This equation gives T in terms of C and S, where G is also given in terms of C and S by (28). The firM
term stands for the repeater-to-station delay, as given by (27) with U2-1/2. The second oand for the
tcrminal-to-repeater delay. It is also based on (27), with the following modifications: Since a repeater
cannot listen while talking, the capacity available to each of the terminal groups is C-G/2. S/2 is the
tiaffic carried by ea.'h group, and lie is the maximum utilization of an infinite population ALOHA.

A three-level organization, as shown in Fig. 5,

i[1 1 1 1

21 4 2F 4

TI® ®TTi

o 0.I' IIx 1 1

0 0 0 00 0 0 0 0 00 0

WHEN SYSTEM IS DRIVEN TO ITS MAXIMLIIt UTILIZATION NUMBERS ON LEFT
OF LINES SHOW FRACTION OF TIME NODE IS ACTIVE. NUMBERS ON RIGHT

SHOW FRACTION OF TIME NODE IS SUCCESiFUL

Firm . Structure of the Thres-Levie ALOHA Sygrsm.

can improve the system performance even more, for high loads. In the best possible situation, we shall
have only two cases of interference: Two messages trying to reach the samae repeater will destroy each

) •'other, and a message trying to reach a repeater that is itself transmitting wll be destroyed without both-
ering the repeater's transmission. In this case the system can drive the top level to its capacity, and the
utilization can be 1/2. Fig, 6 shows the quality of one-level, two-level and three-level ALOHA sys-
tems. For comparison the quality of FDMA with 1024 terminals is also shown.
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Four or more levels will never improve the performance of an ALOHA system, as given by our
model. To see this consider Fig. 5 again: The numbers on the left of the lines in the two top levels
give the traffic per slot that must be offered by the repeaters when the system is driven to its maximum
utilization. The numbers on the right give the rate of successful traffic per slot in each hop. In order
to get a utilization of 1/2, each of the top-level repeaters must be active 1/2 of the time, ano will be
successful on the average 1/4 of the time. Each one of the second-level repeaters must be successMul

- 1/8 of the time, and must therefore be active 1/2 of the time. The capacity available to ewah one of
the bottom-level infinite population ALOHA systems is C/2, and the delay in each will be

I When the system is driven to its maximum utilization we have S-C/2, and the
C/2- eS/4T

burstiness of the bottom-level ALOHA system is _- -I , .78. From Fig. 6 we see that at this,:4 4-e
burstiness a one-level ALOHA system is still better than multi-level systems, and the three-level
ALOHA system cannot, therefore, be improved by splitting its bottom level into more levels, even
when it is driven to its maximum utilization.

We have just seen that multi-level ALOHA centralized systems can be better than one-level
ALOHA when the traffic is heavy, because in the top level we can have a contention system with a
small population, which can better utilize its communication resources. Will such a multi-level organi-
zation improve networks?

Let us start with one-dimensional networks, and introduce equally spaced repeaters as the top
level. We shall have the smallest population of contending repeaters when transmissions go only from
one repeater to its two nearest neighbors. Assuming omnidirectional antennas we find that three
repeaters, i.e., the source, the destination and its other neighbor, contend at every point. The max-
imum utilization can therefore go up, from ile to 4/9, but the amount of contending traffic has also
gone up, from 2NS to 3NS1 The reason for the increase in contending traffic is that when we assumed
a continuum of terminals and considered a given transmission, the amount of traffic generated exactly
at our destination was negligible and our transmission had to contend only with traffic croming its desti-
nation. But when we concentrate the traffic in our repeaters the amount of traffic coming out of a desti-
nation is NS, which is not negligible, and must be added to the crossing traffic, equal to 2NM as before,
'in order to get the total contending traffic.

In general, assume each repeater has a range to reach k other repeaters, and, for simplicity, that
the distance each message must travel on the repeater-repeater network is a multiple of k. The traffic
coming out of each repeater is then NS/k. Each contention system will consist then of m-2k+l
repeaters and tý, total traffic in it if; (2k+l)NS/k-2mNS/(m-l). Let H be the number of hops
necessary, on the average, in the repeater-repeater level. The capacity necessary for this level is there-
fore

I2mNS H (29)
Ur m-I T

Where Urn is the maximum utilization of an m-repeater ALOHA system. U, is written explicitly in
(26), and substituting we get

0 1 2mNS - I- l2NS>e2NS (30)S .Urn rn-I Ii
." °"'. From (30) and (29) we see, even if H is equal to I, that the repeater-repeater subsystem needs more

" capacity than the entire one-level network! The detrimental effect of concentrating the traffic and
increasing the contention is more important than the gain in the possible utilization of a finite popula-
tion repeater system. Our conclusion here is, therefore, that if range is no problem, concentrating net-
work traffic into repeaters wastes communication resources. Introducing repeaters can, of course, be an
improvement if their range is much larger than ",e terminals' range, ard if this significantly reduces the
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number of hops a message must take.

In a heavily loaded two-dimensional ALOHA network we saw that the optimal transmission
radius is small. That is, even without repeaters, whenever the traffic is steady we should make our con-
tending terminal system as small and as finite as we dare! Repeaters are not necessary for improving
the utilization cf a heavily loaded two-dirnensienal network, and the extra level they introduce is waste-
ful. Repeaters can be very useful, for networks of intermediate burstiness, ii' ALOHA is used for
terminal-repeater communication and dedicated channels are used for repeater-repeater eommenication.
For h treatment of such mixed-mode networks see [181.

6. Conclusions

Using ALOHA as an access mode for a communication system consisting of a large number of
distributed terminals is extremely simple and therefore appealing. But a heavily loaded centralized
ALOHA system, in which all messages must reach one common destination, will need e times more
bandwidth than the theoretical best (and impossible!) M/M/I.

ALOHA networks are in a better position. Since messages have various distributed destinations
the channel can be spatially reused: i.e., various transmissions can successfully use he channel at the
same time if they are separated spatially and do not interfere at their destinations. The contention
between messages is not directly determined by the given traffic, and it can b,3 adjusted by choosing the
transmission range.

By modelling a homogeneous and isotropic network by a continuum of terminals we calculated
the optimal transmission range. A two-dimensional ALOHA network need be only -JI times worse
than the corresponding M/M/I network, even when very heavily loaded, as long as the calculated
optimal range is not too small to be practical. The calculated range becomes too small when only a few
terminals are within range of each other. But the problem of organizing and coorainating a system with
a large number of terminals, which was the original motivation for using ALOHA, has disappeared, and
other access modes can then be used to advantage, though we have not considered any in this paper.

Since ALOHA networks pay a smaller price for contention then do the centralized ALOHA sys-
tems it is harder to improve them by reducing contention. Splitting terminals into power groups can
improve any ALOHA system, especially when the traffic is split between groups in a good way, but the
resulting improvement in centralized systems is much more significant than the resulting improvement
in networks.

In a centralized system all messages must reach the station, and must therefore contend for its

ear. A mufti-level organization using ALOHA at all levels can improve heavily loaded single-
destination systems by having only a small number of intermediate nodes communicate directly with
the station. Multi-level ALOHA organiza•tions do not help networks, because choosing the transmis-
sion range is a much more effective means for controlling the amount of contention.
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Hierarebical Use of Dedicated Chanmelm

Abrtract

We consider efficien- organizations for comnmunication res.ources which are uccessed by a large
number of geographically distributed terminals. Developing a model for systems built with dedi-
cated channels, we answer the following questions: What is the role of hierarchies in organizing
large comnmunication nets? How should a large nietwork be decomposed into smaller part3?
What cost versus performance gains can be achieved by such a decomposition?

Assuming that performance is specified and that tne goal is to minimi ze the n&esaMry cost, we
define qualij' and bursliness and find the following: Dedicating channels is reasonable when the
traffic is steady (i.e., not bursty), but when the traffic is bursty !he cost of simple dedicated-
channel systems grows too fast with the number of terminals. By introducing resular hierarchical

structures we show that the cost of biursty systems can be significantly reduced. The optimal
structure must be talanmed, and the ratio of the contribution of the different levels to both cost
and delay is simply determined by a few key system parameters.

We consider two technologies: line and broadcast. The cost of the best bursty line system grows
with the dimensionality of the space in which terminals are distributed. The cost of the best
bursty broadcast system is similar to the cost of one dimensional line systems and is independe.at
of dimenmionality. It follows that bursty broadcast systems have an advantage over line systems
in two or more dimensions.

The abojvc ap)ly to both centralized systems, in which messages originate in the distributed ter-
minals but are directed to one common destination, and to networks, in which both sources and
destinations of messages are distributed.

Organizing a two-dimensional nei.,ork imposes a tessalation on the plane. We compare the
three regular tesslation, and analyze the relevant tiadeoffs. When using the best number of
levels, as a function of hurstiness, icssalating the plane with hexagonal tiles (and forming a tri-
angular network of communication lines) it usually optimal. I

2. Introduction

Designing a communication network for a given traffic requirement consists of balancing cost
and performance. Faced with the task of analyzing networks, we must abstract the relevant features of
traffic, performance and cost in order to arrive at a manageable model. In this paper we develop such a
model and jse it to answer the following questions: What is the role of hierarchies in organizing large
communication nets? How should a large network be decomposed into smaller parts? What cost
versus performance gains can be achieved by such a decomposition? To motivate the abstractions
necessary to arrive at our model consider the following simple example:

Assume messages originate at m different sources (buffered terminals). Assume that the appearanmo of
messages at each source is a Poisson process with rate S/m messages per second, and that the length of
messages has an exponential distribution, Let us choose the information unit so that the average length
of a message is equal to I; this is simply a convenient normalization, which is eciuivalent to measuring
communication capac;ty in messages (of an average length) per second, instead of measuring In bits per
second. Assume all messages are directed to one destination (computer), whi;li we shall sometimes
call the station.
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Consider the two cases shown in Fig. 1.
P0

o STATION 0

0 TERMINALS00

00

0\D

0000
0000

00

CASE 1 CASE 2

TERMINALS AT ONE PLACE TERMINALS DISTRIBUTED

Figure 1. Centralized versus DIstributed Terminals.

In both cases all terminals are at the same fixed distance from the station. In case I all terminals are at
one and the same location. They can, therefore, share a single communication channel, in case 2 the
terminals are spread out around the station, and we shall connect each one to the station by a separate,
individual channel.

How should we compare these communication systems? Having fixed the structure of both

systems, and since the distances from all terminals to the station is the same in both cases, we shall
ignore for the moment the question of distances and cost, and shall characterize both systems by the
relation between the following three parameters:

S Total rate of messages transmitted (messages per second)

T Average total time spent by a message in the system (seconds)

C Sum of the capacities of all communication resources used (m-s&sages per second)

In order to compare the two systems of Fig, I let us first find the relation between S. T and C that
characterizes each of them.

In case I all sources are in one place and are connected t- .ie destination by a single communi-

cation channel. Each message will join a queue at the terminal end of the channel, and when its turn

.1 comes, will be transmitted to the destination, We thus have a classical M/M/l queueing system Ill
with arrival rate S and service rate C (messages per second). The average total time T a message

N1", 28



spends in the system (in queue and in service) is given by

T - - S (1)S~C--S

In case 2 each terminal is connected to the station by an irdividual channel. If C is the total capacity
•available, let us conneUt each source to the destination by a channel whose capacity is C/n.t Each mes-
sage will therefore have to pass through one of m identical queueing systems (with arrival rate S/M and
service rate C/m each.) The relation between capacity and average time in this system is simply

T -
T C/M - S/M C-S

If the communication capacity we use is predetermined, it is natural to compare the delay in the
alternqtive organizations, In our case, for a given C and S, let T, and T2 be the time spent in case I
and case 2 of Fig. 1 respectively. Forming the ratio of (i) and (2) we get

Tj 1 _ (3)

'she M/M/I system of case I is, with 'he given assumptions on the statistical nature of message arrival
and length, the best we can achieve, i.e., we pay the only the unavoidable price for queueing, and noth-
ing more. In case 2 we have the same queueing effect, but in addition pay a significant amount for the
decision to dedicate a part of the channel to each of the terminals. Equation (3) says that a system with
m dedicated channels is m times worse than sharing one M/M/1 channel! For this and other scaling
results see [21.

In our simple example. T1/T 2 does not depend or either S or C But even in the general case,
the ratio of times used to compare two system,; is a dimensionless number. It can, therefore, depend
on S and C only via their dimensionless ratio S/C, which is the utilization of the communication chan-
nel, usually denoted in queueing literature by p. When S < C, we say that the system is lightly
loaded. When S is very near C, we say that the system is heavily loaded, When S .C the system is
overloaded and unstable, we shall not treat this case. Both (1) and (2) give the average delay in the
, ieady state of a stable system.

Equation (3) compares M/M/ I and the dedicated channels scheme when C and S are given.
How do they compare if T and S are given and we want to minimize the necessary capacity? Let C1
and C 2 be the capacities necessary in cases 1 and 2. Inverting (1) and (2) and forming the ratio we get

£C ST+ 
(

! - (4 )
C 2  ST+rn

It is not surprising th;t the dimensionless ratio given in (4) depends on S and T only via their dimen-
sionless product ST. We shall call the inverse of ST the burstiness [31 of th, system. When ST is small
(ST<< 1) the system is bursty. When ST is large (ST>> 0), the system is steady. When the traffic is
bursty there are only a few messages in the system. There is little congestion, and the delay suffered
by messages is mainly determined by the time necessary to transmit them. The communication
resource is only lightly utilized in a bursty system. When the traffic is steady the communication
resource is heavily utilized and the delay is nmainly determined by the congestion.

S~Definitions equivalent to our burstiness ,.,-introducer' independentiy by others 14,51. This is.not surprising, since ST is the only dimensionless number one can form with S and T Lightly loaded

systems are bursty, and heavily loaded systems are steady, so we shell sometimes use thtse terms inter-
changeably. But we shall use the terms bursty and steady when we wish to stress the fact that S and T
are given, and that C is to be determined in the design process. We shall also use the terms bursty and
steady to describe the traffic a given system has to carry
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Equations (3' and (4) may look very different intuitively, even though they compare the a'ftne
pair of systems. If we assume S and Tare given and compare the needed capacity we see that ClIC2
depends on burstiness: when the system is very bursty (ST-O) dedicated channels are m times as bad
as M/M/ 1, when the system is very steady (ST--o) dedicated channels are almost as good as M/ M/1.
But if we assume that C is given and compare the delay as a function of load then (3) tells us that dedi-
cated channel are always m times as bad as M/M/l. Which comparison is more meaningful?

It, a real commercial environment we may be constrained to use a communication channel with
one of several predetermined capacities. Comparing delay will then be the right tool for evaluating
alternative system organizations, and (3) will be more meaningful.

However, for the purpo,;e of this paper, we shall assume that capacity can be freely chosen in
the course of a system design. The client of the design will specify traffic and performanice, and we
shall evaluate different designs by the resources necessary in each of them. While this attitude ignores
some of thz real-life constraints, we feel it gives a much better urderstanding of many important techn-
ical issues.

2. Dosigtnig Distributed Communication Systems

Why is it that the te.'minals in case 2 of Fig. I cannot form one queue anc use one common
cha mel? One may say that the terminals are distributed i. space, and therefore cannot share a channel.
This statement is reasonable if we are committed to using lines for communication, but in general it
should and it can be made more precise. While lines connect pairs of points, other communication
technologies have the broadcast property: a transmission made by one terminal will be heard by all oth-
ers. Consider the following gedanken e•periment: Assume our terminals have a strong empathy and
that, as a result, each one of them senses, immediately and with no error, the fact that another
becomes ready to transmit. Despite being distributed in space such a set of terminals can easily form
one queue and share one broadcast channel. We may say that if perfect knowledge of who is ready to
transmit wai available, then being distributed in space would have been of no consequence.

Consider now another gedanken 6Apetiment: There is no empathy between terminals, hut there
is a demon who has perfect knowledge of who is ready to transmit, Assume-also that terminals will
tranqmit only when instructed to do so by the demon, and that these instructions arrive free and
without delay. Then, once again, the terminals can easily share f broadcast channel: a queue will form
in the demon's head, and the demon will instruct the terminal at the head of the queue to transmit.
We see from this hypothetical ,xample that it is enough to have perfect information in one place, if
that one place could perfectly control all transmissions.

The problem of real distributed communication systems is that the control of transmissions is
distributed, and must be based on distributed inforr.ation The iriformation that is available at each
place is therefore partial and old. We have no perfect ernpathy and no cooperative demon. Faced with
this reality people have developed many schemes for deciding which terminal will use which part of the
communication resources at a given time. These schemes, often called access modes, usually utilize
some of the following ideas: central control using preallocation (TUCMA4, FDMA) or polling [6!, reser-
vations 17,8,91, ALOHlA 1101, and carrier sense [11.

It wo ild have been nice to be able to completely characterize all possible access modes, and say
which one is best for which range of system parameters. But we are far from achieving such a goal.A. [We know no complete characterization of access modes. The performance of many of the known
acces, modes is extremely hard to obtain in an analytic way because they involve comolex systems of
interactinb quweus. While it is often easy to evaluate an access mode for a small range of parameters by
simulation, it is hard to use simulation to get insight as to which access mode is best for which range of
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parameters.

Rather than trying to treat the ensemble of all possible access modes we shall concentrate on
one of the simplest - using dedicated channels. This is reasonably good when the traffic is stuady, but
bad when the traffic is bursty. We shall assume the communication system has very marn terminals,
distributed. over very large distances, and ask: For a given traffic and required performance, can the cost
of a very bursty system be reduced by a hierarchical organization' Before trying to answer this question,
let us say how we shall describe traffic, spl-cify performance, and calculate cost.

To specify traffic we shall assume m, the number of terminals, is very large, that terminals are
uniformly distributed in their geographic region, and that all terminals contribute equaily to the traffic.
The reason is that we are interested in hierarchies that arise in the des.i.n process, and not in hierar-
chies that are imposed by the topology and traffic requirements. It is also often true that the uniform
case is the worst case for a distributed system: if traffic was especially concentrated in some terminals or
regions then the system would be less distributed. In addition we shall assume different mesases
appear independently. When we treat very bursty traffic the exact distribution of message interarrivals
is irrelevant, and only S, that total rate of messages, will appear in our formulas.

Delay will be our only performance measure, and v'e shall ignore the very important issue of
reliability. Indeed, only the average delay T will appear in our formulas, but essentially all results will
remain valid when the variance, range or distribution of acceptable delay values is specified in addition
to the average delay. Meister et al [121 propose and analyze a performance measure that can influence
the variance of delay. We shall show later that we can achieve equivalent results by adjusting our cost
measure.

The. cost of communication depends on technology. We shall classify the very many technolo-
gies possible intc two groups: line systems and broadcast systems; and shall assume a cost measure for
each group.

A line enables the two points at its ends to communicate. The line can be a tight string, a pair
of w-res, a coaxial cable, or a light guidEng optical fiber. Line-based systems have many advantages, but
depend, of course, on a line arriving at every point that needs to communicdte. We shall assume thit

Sthe cost of a line system consists only of the cost of lines, and that the cost of a line channel is directly
pioportional to the a-th power of its length, and to the b-th power of its capacity. By choosing b< I we

*. model the economy of scale usually present when building or buying a Iarge capacity channel. When
a < 1 we actually can tak.', into account the cost of equipment at the ends of the line, which we do not
consider explicitly.

The second type of communication technology we shall deal with is that o1 broadcast systems.
The main property of broadcast channels is, that for b tter or worse, everybody within range can talk,
listen and interfere with everybody else; that is, they all hear every transmission. When everybody is
within range of everybody else we have a one hop system - evry message can arrive from source to
destination in one hop. If the transmission range is less then the distance sp7.nned by the terminals wt-
have a multi-hop system. A message may have to be transmitteJ morne tl.an once, at first from its
source and then from intermediate 'relays', in order to arrive at its destinatiou. In a multi-hop system
it is possible for two different transmissions to successfully use the same bmodi~cast channel at the same
time, if they are not within range of each other, i.e., a broadkast channel can be spatiall, reused. When

j ochoosing a transmission range we must, therefore, face the following tradeoff: If we choo-e a large
range we shall need few hops, but will cause a lot of interference and monopolize the channel in a lage
region. We analyze this tradeoff, but ignore the following fact: Range is determined by transmission
power, among other factors, and power is seriously limited when terminals are mobile.

31



When dealing with broadcast systems we shall entirely ;gnore the cost of equipment
(transmitter, receiver, antenna, power source) and consider only the amount of broadcaht bandwidth
used as thy cost of the system. The motivation is that technology will make the equipment cheaper and
cheaper, but that the bandwidth is now and is likely to remain a truly scarce resoururce, especally as the,
overall communication traffic grows. We shall assume the cost of a dedicatecd broadcast channel with
capacity C is given by CI and ignore a technology.-dependent multiplicative constant. Usually b will be

hnnaller than one: there is some cost in bandwidth when a separate channel is created, and wide baedchannels are therefore relatively cheaper.

The division of all possible communication systems into either line or broadcast systems is, of
course, somewhat arbitrary. On the o,.e hand, a broadcast transmitter with a directional antenna and
beam can become part of a line system, as the microwave links of the telephone syste.m show. On the
other hand, a broadcast system like ALOHA can be implemented on a set of lines [131. Communica-
tion satellites, a prime example of broadcast technology, are actually used by the international tele-
phone community as 'li',es', i e., for point-to-point communication connecting a single source with a
single destination. We congider both this division into lines and broadcast systems, and the cost assign-
ments we made, to be useful abstractions, that help isolate the issue of being distributed, which is our
main interest here.

Real systems are built slowly. Invesiments have to be based on estimates of future de.iand,
and the demand in the futuie is influenced by the existence of the system and the quality of service..
We shall ignore this interaction over time, and assume our systems are built in order to satisfy the
known demand and scrvice requirements at a given time.

3 ,.ecom3sition ta .nd Resourc ,. lloct.lon

Having specikied our performance mnd cost measurvs, let us return to our m equally talkative
terminals, ai; of whom 0,,;h to comunicate i;ith the single station. Denote by L the 'typical' linear
dimensica of ýhe region over which terminals are distributed, ati. assume a line-based communication
system is bilt to cn•evt all terminals to the one station. Since N,,e assume that the cost of every line
is proportiona! I.- the a.th power of ;ts length the total cost of our centralized system must be propor-
tior•a :.o Lw. The total cost must also be proportional to the b-th power of the typical line capacity.
When the traffic is very bursty the typial capacity must be l/T (see equation (1)), and it follows that
the. total cost is proportionai to I/ T6. The total cost D can therefore be written, without loss of general-
ity, as

LO
D - f(5)

Qiven our assumption on the cost of individual lines, the dependence of D on L and on T is an inevit-
abale result of the traffic requirements, i.c., of wanting to communicate (across distances that are typi-
celly L) ovet lives (whose capacity must typically h-e I/ 7".) The f appearing in (5) shows how the sys.
tem cost depends or, is being distributed. f contains some geometric constants, and a dependence on
im, the number of terminals. We shall usually ignore the constants, hnd address the dependence on m:
How fist does f 3row with m? Must it grow that fast?

Assume we ihave a procedure for designing a very bursty centralized commminication system,
given m, the number of eqaall• talkative and uniformly distributed terminals. Such a design procedurej. • can be completely characterized by its -f unction, defined by (5).
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Applying a Liven design procedure to a communication system with very many terminals may
be too expenmive. Can we reduce cost by decomposing the system into small parts, and by applying the
given design procedure to ezch part separateiy? How should we decompose a large system and bow
should we allocate resources to the different subsystems? We shall start with the latter question.
Assume the cost of the j-th subsystem is given by (5), i.e.,

L~a
Di - -T-•b~

and that the total system cost is D- E Dj. Assume that the delay measure T is given by the following
,• weighted average

T T- jSjTjlS (6)

where SI is the traffic carried by the j-th subsystem and S is the total traffic. !f we now choose the Tj in
order to minimize D given T (or in order to minimize Tgiven D) we get the following cost:

•!:b+ D -!.--B'+ (7)

where B - %IL,,S,bf,)

Minimizing tne cost of a hierarchical structure often involves minimizing B given in (7), which
V we sh.all call the B-term.

When resources arc alsockted. to subsystems in the optimal way, which leads to (7), we also get

D, D• S,T, f L,dSibf, 1110b+1)

DA SkTk i LkS, f,, (8)

That is, the contributions of suosysiems to the delay measure and to the cost are directly proportional
to their cuntrihution to the B-term.

When our subsystems consist of a single line each Equation (7) is very similar to Kleinrock's

optimal capacity assignment '16:, with the following difference: by restricting ourselves to very butsty
traffic we can handle cost functions with any b, not just the b- I case. When the traffic is vtry bursty
there is also a simple equivalence between modifying the delay measure to T(*a of Meister et al (121
and modifying the cost measure by substitutirg b/k for b.

When Wing (6) we have asumed that the routing of individual messages does not depend onthe state of the network, i.e., routing is not adaptive. We see that no matter what b is, the B-term is a

concave function of S, and the best routing must therefore result in a tree-like natwork - it d-tis not
pay to split the traffic frowrt a given suurce to a giv-,n destination and route each portion differently.

When the performance meesure specified includes the distriUution of delay values, equation (W)

may be too strict, since it imposes a sifrilat distribution on every one of the subsystems. Eqeiatioa (6)
can then be considered a heurisvic, and the resulting allocation may be sub.ptimal.
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4. RegullUr Hierarchical Structures

&faving decomposed a communication system, equation (7) gives a way to allocate resources to
its various parts. We do not know which is the optimal way to decompose a large system foi our goal
of minimizing cost, so we shall use another heuristic. To introduce it, consider the following two-level
structure: Assume the m terminalu aie uniformly distributed in a region of n-dimensional space, and
divide this region into P congruent regions. Place a concentrator in the middle of each region, connect
all P concentrators to the station according to a given design procedure, and connect all terminals in a
given subregion to 'their' concentrator according to the same design procedure. For simplicity of our
formulas we shall assume that all subregions have the same sh.ape as the original region, and will ignore
the constant coefficienws that depend on this common shape and on the dimensionality.

We shall call this hierarchical system a two-level regular hierarchical system, where the word
regular refers tc the fact that all regions are of the same size and shape, and that all concentrators are
placed in the middle of their regions. We shall call the communication subsystem connecting concen-
trators to the station the top level, &AW the subsystem connectiqg terminals to concentrators the bottom
level. The top level consists of a ne'twork with the P concentrators acting as terminals, and the bottom
level consists of P networks with rn/P terminals each.

Let L be the typical linear size of the original n-dimensional region. The typical linear size of

each one of the P subregions is L (0/P) 1/, and the total traffic arriving at each concentrator is SIP.
Applying (7) to both levels we find that the contribution of the bottom level to the B-term is

4 LOI l/ PWa(s/F 'frn/(,.! IIbI I

Where we have shown explicitly the dependence of ) on m/P, the number of terminals in every subre..
gion. The contribution of the top level to the B-term is

{LaSb~ (P)}/+'

Adding gives the B-term of the two-level regular hierarchical system:

B- IL~ I/ I(b+ 1 I~) + p(I-a/n)/(b4 -+D /)Ii~+) 9B - (L2 61ý Mp I b+1 (9)

Which P will give the least cost two-level system? Are two levels better than one,? The answer to the
second quastion will fol1jw from the answer to the first, since when P-I or P-m the two-level system
reduces to a one-eeve, system. This is reflected in (9) since f ()-O : when we have to connect one
terminal, which is 'uniformly' distributed over its region, to a station in the middle of the region there
is nothing to do, and no cost is intcurred.

To find the best P that will minimize .9 we must say something abo;,t the f-function. For sini-
pficity assume that when m is large the followina is a good approximation:

f(m) - mR (10)

Assumirng that P Fatisfies m>>P>> 1, so that both P an%ý m/P are !arge, we can substitute (10) into
(9) and get B - (Lasb)j 1/+n)pg/(b4 1) + pO-a/n)/(b+I) (m/Pj.l1b+IDj 

(01)

Diterentiating B with respe.ct to P we see that dB/dP-O whenI., ~. gb+lpg (g - I + a/n b+I(m/P)8PI-a"/ (12)

Substitutizr$ the P determined by (12) into (11) we see that the cost of the two-level stzLFcture, optim-
ized with respect to P, is proportional to mh, where
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2
h -l (13 )
2g- i+a/n

When g>I-a/n we have g>h. That is, when using the best P, as given by (12), we have a two-level
structure whose cost grows with m more slowly than the cost of the one-level structure. When
g> I-a/n and m>> I our use of the approximate (10) is consistent, since our best P does satiy
m >> P >> I. We can summarize the above discussion of two-level regular hierarchical systems by the
following:

Theorem 1: A design procedure whose cost is proportional to m-1 where g> I-a/n can be improved for
large m by applying it separately to each level of a two-level regular structure. The best P (number of
groups) is given by (12). The cost of the resulting two-level structure is proportional to mA, where h is
given by (13). When the best P is used, the contribution of the two levels to the delay, to the cost and
to the B-term satisfy

T,,op -D,. B,, -. g-l+a/n (14)

Tb.tIom D b.om B&Ofom g
Proof.- Substituting (12) in (11) we get Bo,/B,,,-=(g-l+a/n)/g. The other two equalities are true
whenever capacity is optimally allocated, as shown in (8).

0

We shall paraphrase (14) by saying that the optimal two-level regular structure is balanced. The
contribution of both levels to the delay and their share of the budget must be in the proportion given
by (14). The right hand side of (14) decreases when g decreases. P also decreases with g, and there
will be less groups in the top level. We may say that when g is small most of the system migrates to
the bottom level, and; that when g is small enough two levels become unnecessary.

Example I: When the original design procedure consists of building a star network we have g-1, and(13) reduces to h=n/(a+n). That is, the cost of the optimal regular two-level star system is propor-

tional to mn/(a"n), while the cost of a one-level system is proportional to m. When g-i (14) reduces
i, " to

TI"p D top a
T =,,, D,,,,o n_

and we get that the two levels must be balanced in a way that depends on the dimensionality of the sys-
tem and on the economy of scale of long lines, but is independent of the possible economy of scale
involving capacity.

If two levels are good, will more levels be better? Equation (13) already contains the answer:
Decomposing a given system into two levels and applying the original design procedure to -. "in beconsidered as a new design procedure. Applying this new procedure to two levels is equivalent to
applying the original procedure to four levels. When g> l-a/n it follows from (13) that h>1-a/n
and therefore four levels will be better than two when m is large enough. In general, let g, be the
power of m characterizing the resulting cost and f-function when the given design procedure is applied
to 2' levels. Equation (13) can be rewritten as

g 2
j gi ==

1,- I +a/n
where g,1 is the power of m characterizing the direct application of the givan design procedure to one
level. It is easy to see that when g> I-a/n the sequence (gjl is monotonically decreasing and con-
verges to I-a/n.
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The argument of the previous paragraph has the flavor of an existence proof: It shows that by
having enough levels the cost can be made to grow as an exponent of m arbitrarily close to I-a/n. As
m becomes larger, using more and more levels is justified. What is the best number of levels for a
large but fixed m? To answer this question we must consider the constant coefficient multiplying md.-
This constant, which was iguored until now, grows with the number of levels, and therefore tempers
the trend towards more and more levels.

The i-function and cost of a system consisting of r levels, each of which is built according to a
given design procedure, can he calculated explicitly. Let P, be the number of terminals per group in
the i-th level, starting from the top. Rather than trying to optimize the overall structure directly, note
thg following: Every two consecutive levels in an optimized r-level system must be optimal as a group
of two-level systems. Equation (02) can therefore be rewritten as, b+,piS-n+a1N b+1

g t ,. g- I +a/n) b+Pi+ig (15)

and ( 2) can be generalized into

I- - (l-a/n)/g (16)
B,+1

where Bd is the contribution of the i-th level to the B-term. From (15) and (16) we get the following:

Theorem 2: A design procedure for n-dimensional centralized systems whose cost is proportional to mm
where g> l-a/n can be improved for large m by a multi-level regular organization.

When I-alr nO the best number of levels is given by

r (b+l)/g In(gl(g-l+a/n)) - (I-a/n) In(m) (17)

and the cost of the system, when using this r, is proportional to
(mi -o /b,_lh+I

When 1-aln-O the best number of levels is given by

r - in(m)
b+1

and the cost of the resulting system is proportional to [In (m))b~l. In both cases, when the optimal
number of levels is used, the number of lines in all groups at all levels is the same, and must therefore
be given by mi/'.

Proof- See appendix.

When a is smaller the best regular hierarchi:al system has fewer levels and leads to smaller
improvements, since it is harder to save by shortening individual lines. When b is smaller the best sys-
tem has more levels and leads to larger improveoiznts, since common large capacity lines become more
economical.

Example 2: Let the given design procedure be to build a star network. That is, g- 1. Let a and b be
equal to 1. From (17) we see that the optimal number of levels for a two-dimensional system is given

0 in this case by r - log 16m, and that we should have 16 lines in every group. The cost of the resulting
system is

T 1/

where we use to denote 'is proportional to'.
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Consider the regular hierarchical systems built with a star network at each level. Wvat will be the elfet
on cost If we change the specification of the allowed delay variance? Consider two extreme cues: In
the first, only the average delay is specified. In the second, let us assume that tht average delay
suffered by messages from any terminal in crossing a given subsystem is the sarne for all terminals.
The comparison between these two alternatives depends on geometric constants, which we have sys-
tematically ignored until now since expressing them analytically is usually impossible. To slmplify the
geometric calculations assume, in this section only, that the region over which terminals are distributed
is an n-dimensional sphere, even though a sphere cannot be divided into equal parts similar to itself.
Consider first a one-level star network with only the average delay specified. The B-term can be
immediately derived from (7). Assuming the number of terminals is large and approximating sums by
integrals we get

n(b+l) Lb
BA -n(b+l)+o

and

(ST)h

where the subscript 'A' stands for 'average'.

When a uniform delay is specified D can be written directly, since all channels must have the
same capacity, and we get

Dv - Average of L, Tn a L

TbLI Tb a+n

.1l,1r the suo"ript 'UL stands for *uniform'. Forming the ratio we get* Du _ n(b+l)+abl= I~b+1
D n(b+I )_ + a (19)

DA n(b+I) a+H
Equation (19) was derived by considering one-level systems, but it is valid when comparing r-level sys-
tems and when comparing systems with the best r, which is independent of the delay distribution
specified. Equation (19) shows, therefore, the additional co.it of demanding a uniform delay versus

demanding only an average delay,

Ilow large is the ratio given by (19)? It has its largest value when a--b-n-l, and is then
equal to 9/8. That is, if a system with only the average delay specified is not acceptable, the delay can
be made upr'. n at ai: ýtional cost of no more than 12.5 per cent!

S. A Lower Bound?

Theorem 2 shows that by using the heuristic regular. hierarchical constructions the cost of0very

bursty centralized dedic ' -f line systems can be made to grow only slightly faster than mt-I/l. (The
growth of cost with m ca bounded frem above by an exponent of m arbitrarily close to I-a/n.) Our
regular hierarchical stri ,,s have the following properties:

(I) A concentrator is placed in the middle of each group.

(2) The terminals are divided and subdivided into equal groups.

(3) Every message crosses the same number of levels on its way to the station.

These properties were adopted in order to simplify the analysis of regular systems, but they do not lead
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to the best, i.e., least cost, system. It is quite clear that the concentrator should not be placed in Ihe
center of its group but closer to the station. It is quite ix)ssible that groups further away from the sta-
tion should be larger and thai nmessages coming from afar should cross more levels on their way to the
station. (This will naturally occur in regular systems too when we note that concentrators will be colo-
cated with so•me ol the terminals, as shown in Fig. 2).

000000000000000000000000000

Figure 2. Hierarchical Organization of a One-Dimensional Dedicated Line Syat.'n.

Some specific heuristics that perturb the regular structure slightly were analyzed in ,31, but only a con-
stant improvement was obtained We suspect that no system will have it cost growing more slowly with
m than mI-a/". (See also discussion at end of section 8.).

6. Dedicated Broadcast Channels

In previous sections we saw that at hierarchical organization can signilicantly improve the perflor-
mance of a system based on dedicated lines, especially when the sys!em is bursty. The basic cause for
improvement was that instead of having long lines with a small capacity dedicated to cach individual
terminal we could use short individual lines. The long lines were shared by more tralfic, and the capa-
city invested in them could, therefore, contribute more to improving the performance.

If the communication resource we have is a broadcast channel, whose cost depends on capacity
only, it seems that channels used for short distances are just as expensive as those used for long dis-
lances. So how can a hierarchical organization help? The crucial fact here is that broad:sst capacity can
lc reused spatially. That is, it can be used independently and at the same time in two or more separate
areas. A long range transmission prevents others from using 'he channel in a large region, and this
distance-related 'cost' will be explicitly accounted for in the capacity allocation process.

Let us, once again, create a two-level regular hierarchical system by dividing the m terminals
into P, groups with P 2 terminals in each. We shall give each group a concentrator, but shail now call it
a repeater, this being a more common name when radio nctworks are discussed 1141. Dedicate.a capa-
city C, to every one of the repeater-stati..n communication subchannels. Dedicate a capacity ( 2 to
every one of the terminal-repeater communication subchannels and assume that these subehannela can
be used by every one of the groups to communicate with its repeater, without any interference from

S* other groups. That is, we assume spatial reuse can be done perfectly, without any waste in capacity or
degradation in performance. This ik a reasonable assumption if, for exampie, each of the terminals ha6
a directional antenna pointing at its repeater only or if the repeaters are separated by hills. so that every
transmission is heard only by the repeater to which it is meant. Fig. 3 shows our model for this two-
level system.
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osTATioN
* REPEATER
O TERMINAL

SC 1, Is DIVIDED iTo P,
DEDICATED CHANNULS.29.

S0 0I; 0 0 0 0 0 0

EACH GROUP USES C2 INDEPENDENTLY, AND DIVIDES IT INTO P2DEDICATED CHANNELS

Figure 3. Dedstd Boedamt Chunnels in a Two-Level Oqrniumtion.

When the traffic is very bursty the averate time spent in this two-level communication system
is given by

T-k I+-

p where k is a constant delp.nding or, the scheme used for splitting a channel into dedicated subchannels.
(For Frequency Division Multiple Access k-i•. for Synchronous Time Division Multiple Access with m
j nubLhunnels, k-(m/2+l )/m). The cost of this two-level system is

D - PCA',i+ PI•C2 ?

Our design task is to minimize the necessary budget D, when T and S are given, by ,:heosins
C( and C2, and by choosing P, and P2 subject to "'PP2 - i.

By symmetry it is obvious th&t when m >> I and two levels are better than one then the beat
choice is PI - P 2 and CI - C2. That is, the best two-level regular hierarchical broadcast system must be
btlanced. Using these best values for Pi,P2 ,C1 and C2 we get

"D "D- [k! 2h+m1/2
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The generalization to r levels is immediate. The best r-level regular system must be balanced.
That is, P1 =- P2 - .... P,- mil'' and all individual channels at all levels have the same capacity. The
relationship between cost and performance is

D j rh+Iir

Th.

The best r is easily round to be equal !o In(m)/(b+ I), and when this number of levels is used
we get that for 01 i P , - eb+ I and that

oD - - 1 n(m) (20)

Kamoutp 1151 found similar results when optimizing hierarchical communications networles with other
objectives.

If spatial re¢sc is not perfect and there is some interference between groups we have to modify
our formulas slightly. Assume the groups at ail but the top level can be colored with q different colors
so that no two groups of the same colors at the same level interfere with each other. In an r-level we

can now write T - k1# + _!_+ + _L- and D -PjC 1A+ q(P2C2b+. + PXF~j Minimizing[ C1 C2 C

I i/(b+I) 11 .(b -1)h +b
D by choosing C, given Twe get D) (k-"PI 'i'qP2 + + luI I b

Pi satisfy P, - qP1 -. . qP, and using these best values we have
D - ~ brh+ fqr l I21

We expect q to be a small integer. When m and r grow (21) wi!l give a total cost almost q times greater
than that given by (20). But in both 'mases we see that when using dedicuted broadcast channels and the
bes! number of levels the cost of a very bursty system grows like (In(m)I1+", and is indeperndent of the

F I geometric dimensionality of the system. The cost of regular hierarchical line networks, given in
j Theorem 2, depends very much on the the dimensionality of the space in which the terminals arc dis- -

tfibuted. It seems, therefore, that dedicated broadcast channels have a signiticant advantage over dedi-
cated lines, when building large bursty systems distributed in two or more dimensions.

7. Hlereichical Organization of Non-Sursty Line Systems

So far we have dealt only with extremely bursty systems. Can a hierarchical organization
improve the performance of systems that are not bursty?

To answer this question for line networks we have to solve the capacity assignment problem
when the traffc is not extremely bursty. This is almost impossible to do explicitly utiless the cost or a
line is directly proportional to its capacity, which we shall assume in this section. (That ix,. b- I.)
Anothei greatly simplifying assumption we adopt is the indc-pendence assumption 1161. According Io this
assumption we analyze the network as if the length of each message is chosen and rechosen indepen-
dendb, at each step along its path, from an exponential distribution; and as if arrival e;' messages at each
line is a Poisson process independent of message length, Let CI.Li and Si be the capacity, length and
travic of the -th line. The average message delay in getting across the i-th line is then modelled by

T- ----- and the source-destination delay, averaged over all messages, is T - 1Si T,/S. The cost of

the i-th line is D,-C,LP. Minimizing the tot,'l co'st D --'D 1 while T is given by choosing (',, or
W .•minimizing T(while D is given, we get the following solution for the optimal capacity assignment 61:
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S' + (2,L,

where

1) - T.S,, L' 1 (23)
'I.

and

D 
T,

A certain minimum budget is necessary for carrying the given traffic, even if we are willing to tolerate a
very large T Dr is the excess budget, invested in order to make the delay finite.

We shall now consider in detail the case of one-dimensional centralized systems, in which the
|cost of a line is directly proportional to ius length, (i.e., a- I ). Let our m terminals be equally spaced
on a line segment of length L, and let traffic be evenly divided among them. If we create a one-level
star network (i.e., connect every terminal to the station by a direct and private line), assume that
m >> I and substitute integrals for sums, we get from (23) that the cost of this one-level system is

D-LI Si 18 (24)~t! ~D-- -- S+- 24

9T

What would the cost be i"we could have used a single line sarving a a single M/M/1 system?

It' we have the same load S, and the average distance a message has to travel is L/4 as ab)ve,
" "then in order to get the %same T from an M/M/I system our budget %%ill have to be

l~lnigth uliyQ rasytm ob D -I+ I (25) A

Ielining the quality Q ol" i system to be the inverse ratio between its cost and the cost of the best pos-
sibie M/M/I system, and dividing (25) by (24) we get that the quality of the one-level star system is
(for m>> I)

ST +I
Q "ST + 8#n/9

Consider now the regular two-level system with P, equal groups and P2 terminals in each
group. Assuming that the star network is built at both levels, we get from (23) the following relation
between total cost and performance of this two-!evel system

LD - --(I) L 1I/p,12 + p 112  (26)4= Sl )+ 97 !0
For a given S and T. what should P, and P2 be to minimize D? Treating P, and P2 as real variables we

See that the optimal P, and P2 are related through
•j iP, _9 ST

.P +8 m (27)
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Let D, be the amount of money invested at the concentrator-statlon level (the top level) and
D, be the amount invested a~t the terminal-concentrator level (the bottom level). Let T, and T2 be the
average time a message spends in the top levt;I and the bottom level respectively. From (23) and (27)
we get the following

D,-LS/4 T, ST
D2 - LS/(4P1 ) T2  V J_ 8smf

The first equality is not specific to regular systems. It follows directly from (22) that whenever we con-
sider two sets of lines in a communication system with an optimal capacity assignment, the ratio of
their contribution to the average delay is equal to the ratio of excess the budget invested in them. The
second equal'ty sign shows how both of these ratios depend, in a two-level regular system, on ST

When ST-O, (27) shows that P,-P 2 and (28) is then just a specilic case of (8); every regular
two-level system must be balanced when bursty. When the system becomes less bursty P1IP 2 , T1/T1
and D1/D 2 grow. There are more branches than leaves per branch, more of the budget is invested in
the top level, and the message spends more time in the topl level. When ST becomes large enough,
i.e., the system becomes very steady, we get from (27) that P 2 is less than one! This means that for
large enough ST a one-level system will be better than a two-level system, Our optimized two-level
system is trying to achieve the one-level performance by 'eliminating' the unnecessary bottom level, or
at least by lessening its effect.

r-level regular systems can be optimized by applying (27) and (28) to every two consecutive
levels. As an example, let us solve the three-level case.

A three-level regular system will have P, branches at the stem, each of which splits into P 2
twigs, each of which carries P., leaves. The two top levels can be considered as a two-level regular sys-
tem with PIP 2 terminals. The two bottom levels can be considered as a set of Pi identical two-level
regular systems with P 2P.3 terminals, each with a total throughput S/P,. P1,P2 and P, must satisfy

PP 2 P.3= M

Applying (27) to the two top levels and to the two bottom levels we get

P, 9 S(T1 +T 2)
P2 8 PIP 2

P2  9 S(T 2+Tl)
P3 8 PIP2P3

where TI, T2 and T3 are the average times spent in the top, middle andi bottom level, correspondingly,
and they satisfy

T + T2+ T,1 T

Applying (23) to the two subsystems, we get

/2
T P2P

IT.,
We therefore have six equations for six unknowns. While we do not have an analytic solution for
them, a numerical one is easy to obtain.
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Fig. 4 shows the quality of the one-level, two-level and three-level regular systems for 1024 .er-

minals. When the traffic is very bursty the three-level organization is better. When ST grows its

advantage becomes less pronounced, and if the curves in that figure were drawn fine enough we could
have seen that the two-level system and then the one-levei system takes over. Fig. 5 shows, for a three
level organization, the ratio between the time spent in every level bid one third of' the total time spent

in the system. Fig. 6 shows, for a three level organization, the ratio between the number of branches
in every level and mill. In both of these last two figures, the convergence of all three curves to a com-
mon point when ST-0 is a manifestation of the balanced nature of bursty systems under optima: caps-
city assignment.

Multi-level regular systems arc much better than the one-level system when the traffic is
bursty. Why do they become progressively worse than the one-level system as the traffic becomes
steadier?

!n the regular systems the concentrators are placed in the middle of their group. This means
that some messages will take a route which is longer than the direct distance from their origin to the
station. When the traffic is bursty, this effect is negligible compared with the gains resulting from shar.
ing the long lines. But when the traffic is steady, sharing leads only to a small gain, and the extra dis-
tance travelled is significant. When ST is very large, we see hy comparing (24) and (26) that the two-
level regular system costs LS/(4 PI) more than the one-level system. This eAtra cost is a direct expres-
sion of the extra distance travelled. Half the terminals, i.e., those terminals whose concentrator is
Sfurther away fromn the st-atien than they are, will have to travel a-i extra distance equal to twice the dis-

* tance to their concentrator. The average extra distance travelled is therefore simply the average
terminal-concentrator distance, which is equal to L/(4 PI).

We can decrease the extra distance travelled by placing the concentrators nearer to the station. Let us,
for simplicity, adopt the policy that all concentrators will be placed so that a fraction j3 of" their group
will be on the side near the station. In analogy with (26) we get that the cost of the two-level system
built with this policy is

D = -S -I 4,6iP1 ) + _ (29)
45

wht.rcmV
B 3 W2P,+ -12 + (1-/31 V/j2

When 13= 1/2 this equation reduccs, of rourse, to (26).

For a given value of ST. which PI. P 2 and 13 will give the leatst cost system? For a given J,
linding thu best P; and P 2 is easy, and the best /3 can then be found numerically. As is intuitively

clear, for bursty traffic the best /3 is equal to 1/2. When the t.allic b~comes steadier the best P3
becomes smal'0.r, and when the traflic is extremely st,.ady the best /3 is equal to zero.

It is interesting to note that, for any given /1, the system wit:' the optimal group size obeys a
balance principle: The excess budget is invested equally in the two levels and the average delay in the
two levels is the same.

SWhen /3=0 the system has a nice property that we lormalize thus: A co.nmunication system in
which the length of the route taken hv any message is equal to the direct distance from its source to
destination will be called a go-/orward system.
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S~ubstituting (3-0 in (29) and searching for the best P, and P2 we see !~st th cot of the best
two-level go-forward systemn isID m L 'S + JT (30)

Comparing (30) to (25) we see that, tor large m, tht two-levek go-forivard system is better thin the
one-level system for all values of Sr But when thi: system' is very steady, there -s very fittla to pain by
introducing a two-level structure.

Fig. 7 shows the opt~msl 13 es a function of SIN When the traM. r is bursty we '.hould usl repu-
liar systems W(3- 1/2) and as ST grows (3 becomes smaller, land the besi systems wi"h g very steady
traffic are go-forward systems (d -GO). But Pig, e shcw., that the idea of chaosing the best plaue for the
concenatrators as a function of ST is ali~ost irrelevant! Fig. 8 showr~ the cost of the twc-level regular
system, the two-!cvel go-forward systere and the orcelevel sysiemn as d function of ET. The costs were
normalized, for each value of ST, Ly *¶hc cost o" the two-leve: 3y~tein with the IMA: c~aemttratcr Place-
inent for that ST, as given by (29) when #3 is cholsen to min~mize D. Assutaie wiý haive to design a sys-
tern with a given ST, hnd consider the followi~ng decision: we shall Wni~e ;e reg ar tw-level syste,
with the optimai nuwiber of groups for the given ST as long as it is bcteer than the one-level system.
Othe,-rwise we shall simply use the o.'e-levei system. From FRA. 8 we see tho if we iogrry this :wo.
cedure, instead of trying io find the two-level system with the optimal rouling policy, then ouir expenses
wIll be larger by at most 1% ! A similar conclusion applies to networks 131: If the one-level s~ystemn is
not good enough we mray consider only regular multi-levci systems, and lose almost nothing.

p ~3. Dlsvrtb~ate Dedicated-LlnL- Networks

Until now we have only dealt with t'ke centralized system c~ase. That is, the soitices of moessages

trei.,ti rig the case of communication systems with distributed destinations, which we cull networks. Whcn

analyzirg networks we shall be able to use many of the results obtained for centralized systen's. To see
how, consider first one-dimensional rietworký. b5aill with dpdicated line channels.

Assume terminals are loceted a, fixed interv.,is along our one-dimrensioned rae~tworks, and let I
be the distance between any peir of nearest neighbors E~ach terminal wishes to communicate with all
luther terminals. The traffic of messages hetween any t\ o te~rminals is a Poisson process, whose rate
depends only on the distance between terminals, and not on their identity. That is, all terminals are
identical in their stutistical properties. We need the distribution of distances ý(ra-velled in order to com-
pletely specify the traffic. However, anc'st of our results will depend only on N, 0i- aw'rogr distance
travelled.

Let as assume that our network is 'infinite', i.e., its tot-.l size is so much !arger thhn N that an
insignificsnt fraction (& terminuls are affected by the bouildarics of the network. It makes no sense W.
talk about the totai traffic carried, .9A let S, denote the traffic comn'g out 'if a i'nit length of thc naetwork.I' D,, will similarly denote the budget invested in s unil length or the aetwork.

Our motivation f'or choosinb tn entirely uniio-m t~iniverse may ,iowv be rest~.u1: Ir some, ilermi-
nal had an esponcially large comfnuiv'ation requiremeiit, or if it was zqe~ially cerntra! in some sense, wV
wo-.ild n'9*Jrally 'reat it in a special way wher. deoigniing a good system. We, ;iowever, ame interested in
the. diffheietlation lxetweer terminali thaat appears w'hen hie~archies a~e bu in. an entirely uniform
environment, evoert though no term~inal is special to be!0'i -with.
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Consider a network in which each terminal is connected to its nearest neighbor on each side, as

shown in 1ig. 9.

g*o 0 0 0 0 0 "o°

Figure 9. The One-Level One-DImenelonal Network.

Let C be the capacity given to each line. We shall call this network the one-level network. Ivery mes-
sage goes, on the average, through N/I lines on its way from source to destination, and the trallic in
each line is NS,,/2. Hence, the average message delay is given by

N/IT C- NS/( 2

Assume that the cost per unit length of a half-duplex line is equal to its capacity, i.e., a-b-I. To cal-
culate the budget per unit length necessary for satisfying a given T and S, via the one-level system, we
solve (31) for C as a function of N, S,, and T, and then multiply by two, since every unit interval has
exactly one line carrying traffic in each direction. The result is

D, - NS,+2M/T (32)

where M-N/I is the number of terminals contained in the average path.

It seems that NS, the traffic coming out or a portion of the network whose length is equal to
the average distance travelled, is a natural traffic measure in a one-dimensional network. (After all, S,,
has the dimensions of traffic per length, and what other natural length except N do we have to multiply
S, with in order to get something with the dimension of traffic?) The natural dimensionless parameter
we shall use to characterize the traffic is NSJT. When it is small we shall call the traffic bursty, and
when it is large we shall call the traffic steady.

Let us double the number of terminals per unit length, while keeping the traffic per unit length,
and the ave'age distance travelled by messages constant. Each terminal will now generate half the
traffic a terminal generated in the original system. The new network has the same N and S, but M
became twice as large. M plays in (32) the same role that m played when we discussed centralized sys-
tems. It is a natural measure for the network being distributed, and characterized the extra expense
incurred because terminals are not all at one place. We conclude from (32) that the fact that the net-
work is distributed poses no problem when the traffic is steady. (When NSIT>> I the second term in
(32), which is the only one that depends on M, is negligible compared with the first.) But when the
traffic is bursty, the system cost is essentially proportional to M, i.e., the cost is then strongly dependent
on how distributed the system is.

Can hierarchical organizations help networks? Can we use concepts introduced previously for

centralized systems to characterize good hierarchical networks?

jl'N.so II



9. Hierarc•hcal Line Networks

Consider now n-dimensional networks in which the cost of a line is, once again, equal to the
product or the a-th power of its length times the b-th power of its capacity. Let N be the average
source-destination distance to be travelled by messages, and assume the size of the networks is much
larger than N, so that edge effects can be neglected. Let M be the number of terminals in an n-
dimensional cube of size N. The volume occur,--d by every terminal has therefore a typical linear size

- equal to NIM"/".

Let us form a one-levei ... 'orc by connecting every terminal to a small number of near neigh-
bors. The typical line Ikngth is N, '?' ", and every message typically goes through Mil" lines. The cost
per unit volume is there',ore given by

D;, N IR 1 N 1 1""I j - r

To build a hierarchical system we shall introduce stations, connect every station to a few of its
near neighbors, and assume messages ae routed thus: Every message will go from its source terminal
to the nearest station, from it to the station nearest its destination using the inter-station lines, and
from that final station to its destination. Let L be the length of the typical inter-station line, and let
IlL" be the density of stations.

When networks are very distributed (i.e., M>> I) a good placement of stations will usually
satisfy N >>L >> NI A ". We shall call the inequality N >>L the assumption of long distance travel
and consistently use two of its implications: The portion of traflic that can reach its destination without
getting to any station is negligible, and the average line of sight distance travelled by a message from

* the station near its source to the one near its destination is approximated well by N. The assumption of
long distance travel allows us therefore to ignore the distribution of distance travelled. Considering this

Sdistribution is of no importanc-l when optimizing a multi-level structure with M>> » [31.

If we assume that every terminal is connected to its station by a direc line we get a two-level
system. Using the assumption of long distance travel we can calculate its cost thus: Let IIT1 and lIT2
be the typical capacity of lines in the inter-station (top) level and the terminal-station (bottom) level
respectively. A typical message takes 2 hops on lines in the bottcm level and NIL hops in the top level
(ignoring a small geometric constant.) The average time a message spends in getting from source to
destination is therefore

T=r T,+ 2T,

l.et there be p terminals per station. The typical length of lines in both levels is L, and the cost per
unit volume is therefore

minimizing D,, by choosing T, and T2 given Twe get, in anlogy to (7),

D B b,.

where B - (N/L)l(,b+D)pI/(b+1 )+2b/,b+ 1). The p that will minimize D, must satisfy

..-- 4'



S b+I
+bo a (AM/p)b'n-- 2 bp (33)

a

When this best p is used we have, independently of the geometric constants neglected when writing
(33), that

D __8'_ " a 134)
DMOnOP Bbo,,hom n b - a

D. .NT• g(b+#-a)/(b+n)

Equation (34) shows, once again, that the best two- 'evel system is balanced, but the optimal
investment ratio for networks, given in (34), is different from the optimal inve-stment ratio in central-
ized systems, given in (14).

r-level networks, with r-I levels in the terminal-station part, can be solv'.d by applying (33)
and (34) to the top two levels, and by applying (15) and (16) to any other two consecutive levels. But
the network with the best number of levels can be more simply chagacterized by applying Theorem 2 to
the terminal-station part, i.e., by assuming that every one of the centralized systems Lonnecting termi-
nals to their station has the best number of levels. Assume that the inter-station distance is L. and that
the number of terminals per station is p. When a# n we get from (18) that the cost per unit volume of
the terminal-station levels is

L a b+I

Lit ' -

Using pN". MLI to express L in terms of p we see %tit when p >> I this cost is a slowly growing func-

tion of p, proportional to pa/, Ip(I -a/n)/(1+L) IJ . The top-level cost is, when p>> I, a slowly

decreasing function of p, and the best p is therefore of" a magnitude similar to M. When the traffic is
very bursty and M>> I the cost per unit volume of a network with the best number of levels can
therefore be roughly given by

D U MI-a/= (36)

Continuing the disculsion of a possible lower bound for the cost of line systems started in section 5 we
can say the following: If centralized systems existed whose cost grew more slowly with p than pia-al
then instead of (35) w'e would have that the cost of the terminal-station levels is a decreasing function
of p. The overall network cost would then he a decreasing function of p and of L and the best L will
satisfy L >> N. While not impossible, it is vLfy strange that the best network will force a message to go
to a station that is much further away from its source than is its average destination.

In analogy to (36) one can see (31 that the cost of very bursty broadcast networks and of one-
dimensional IUne networks is proportional to [Iog(M)Jb+I, and troadcast channels are once again supe-
rior to lines for a bursty system distributed in more than one dimension.

10. The Geometry of Networks

In deriving (36) we neglected various geometric consvants, since we wanted to show in the sim-
plest possible form how the cost of very bursty networks depend on system parameters. (Wh'le (36)S* • does not contain S., it is valid only when N"S,,T<<I.) flow will the geometry of the top levo~l

influence the cost of networks? We shall treat only the case of two-dinmensional line networks.
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It is well known 1171 that there are exactly three regular tessalations of the plane: i.e., thr
ways to cover the plane with identical regular polygons. If we place a station in the middle of each tile
and conne-t it to its nearest neighbors we get the three networks shown in Fig. 10. We shall call them
the square, triangular and hexagonal network, where the name applies to the regular polygons created
by the lines in the network. Not' tlht we do not draw the tiles (the regions around each station), but
the dual graph showing the immmunication lines between adjacent stations. For example, tesalating
the plane by hexagonal tiles prodluces a beehive-like structure which leads to our triangular networks.

Is thbre a common basis for comparing these three tessalations? For a preliminary comparison,
let us assume that all traffic originates at the stations, and is destined to many points in the plane, not
necessarily to other stations Nn the network. Every message will use the given network to arrive at the
node closest to its destination. We shall not consider how the final node delivers each message to its
exact destination at this time. Let us aLo assume that the distribution of traffic coming out of a node
has a radial symmetry, and that the average line of sight distance from the source node to the destive-
tion node is N. The average distance actually travelled by a message will be larger, because there may
not be a line directly to the neighborhood of its destination. Assuming the average distance travelled is
much larger than the inter-node distance we can say that the distance actually travelled is 8N, where 8
is a characteristic constant for each of the possible networks.

In the square network we have 28-- J1cos0+sinOl)d9-±-l.27 A similar simple c-l-

culation gives that in a triangular network ,- I. 1O . For the hcxagonal network we used a computer
program t) find that 8 is approximately equal to 1.30.

i* Let S. and D, denote the totai traffic and budget per uitt area. Let A4 be the area per node.
Each node will generate new messages at a rate of AS.. If L is the internode distance then the number
of hops taken by a message, on the average, is ?hN/L. Therefore the total traffic passing through each
node will be AS,,iN/L messages per second. Let e be the number of nearest neighbors each node has,
which is also the number of (half-duplex) lines per node. The total traffic per line must therefore be
AS,5N/Le. If T is the required total average delay, the delay suffered when crossing a given line must
be TL/8N, and the capacity necessary for each line is

N +AS + AN (37)
Let us first assume that a-b-I. The total cost per node is LhTn found by multiplying (37) by L, the

length !)r every one of the lines, and by e, the number of line3 per node. If we divide by A, we find
the cost per unit area to be:

e8N
-Ns, + N(38)

Let M be the number of nodes in a square whose sides arc equal to N. The area per node is then
N2/M. Substituting this for A in (38) we get

D,, - 8iNS,,- +g (39)
N T •L In a two dimensional network, the natural traffic measure is NIS,. and the burstiness measure is

N2SUT. When the traffic is very steady only the first term in (39) is significant. The best network will
then be the one with the smallest 8, i.e., since the triangular network imposes the least extra distance
on messages, it is th(; best of the three for steady traffic. When the traffic becomes very bursty
(N2ST<< I) only the second term in (39) is significant, and the hexagonal network is the best

i - because it has the smallest e6.
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Fig. 1 shows the cost of the three networks, nrmalized by the cost of a hypothetical network in which
8f-e-I . As expected, the triangular network and the hexagonal network are best when the traffic is,
respectively, very steady and Yery bursty. It is somewhat surprising, though, that the square network is
never the cheaoc.st of the three.

For gcncral a and b, i.e., rot necessary equal to 1, we get frm (37)

D.- --ELe '4S&N/L e +aN/TLn

L does not irn general disappear from the cost formula, but we can write A - -qL 2, where 'Q is a con-
ster.1t, depending on the geometry of the network, and given in Table i. When comparing the three
regular networks we shall assume that A and the density of terminals are common to al. three. We
then find the following: When the traffic is very bursty the best network is the one having the smallest

b--)/28 . When the traffic is very steady, the best network is the one having the smallest
•" I .. b | ,(b-a)12 .

It is quite intuitive that as b grows smaller the advantage of the hexagonal network grows, since
it concentrates its traffic on fewer high capacity lines that are becoming relatively cheaper. As a grows
smaller the advantage of the hexagonal network decreases, since its line channels are shorter. Using
the numeric values for 8, E and q we find that of the three regular networks, the hexagonal is always
(i.e., independently of a and b) the best when the traffic is very Lursty. When the traffic is very steady
the hexagonal network is better when b 4, 0.65 + 0.19a, otherwise the triangular is better.

There is, of course, no reason to limit our consideration to the three networks in which all
nodes are equivalent and in which lines connect only nearest neighbors. When the traffic is steady, we
can connect every node to more of its neighbors, in order to lessen the distance messages have to
travel. However, since the triangular network already has 8- 1.10, the most we can gain by introducing
more and more lines is 10%. When the traffic is bursty there is room for a lot of improvement, and
that is where hierarchical structures becomee interesting.

Newell [181 gives a general discussion of networks with an economy of scale in their cost. He
• i points out that even if the node placement and the traffic requirements are symmetric, the best network

will in general nor have the same symmetry. For example, the two-dimensional square network withpoint o at evrnti the n e plac e d th traffic rqiementscar s ic, The besutintwrk-
large M and a bursty traffic can be improved by deleting every other vertical line. The resulting struc-
lure, shown in Fig. 12, forces some messages to go an extra distance, until they can find a vertical line.
But as a result only half as many vertical lines are necessary, and when the traffic is bursty this will
morm than compensate for the extra distance travelled.

cpctIn our model there can be three independent sources for an economy of scale: when b < I large
caac'ity lines are relatively cheaper, when a < I long lines are relatively cheaper, and when the traffic is
bursty sharing unused resources leads to significant economies. What ig the best network structutc, as
a function of a, b and burstiness? Newell, in the same paper quoted above I181, points out that there
are no efficient algorithms for solving large minimization problems when the cost functions are con-
cave, i.e., when there is an economy of scale. Symmetry cannot be used to reduce the complexity of
tLe problem, because the best solution will not necessarily reflect the symmetry of the traffic require-
merts. We shal: not, therefore, try to find the best network. Can any conclusions be drawn by consid-
ering the geometry of our heuristically constructed hierarchicEl structures? In the previous section we
ignored the gemnetric constants, bui let us niow bring them into the treatment of two-level networks,
when a-b=l and when the traffic is not necessarily bursty.
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Figure 12. I mproving . Square Network for Bursty Traffic.

!et Dj be the cost per unit area of the top level (the station-station level), and let T, be the
avcrage time each message spends in the top level. (08) applies direc'tly to the top level. Let L be the
distance between nearest stations, and let A be the area per station, where A -'qL'. By definition, N is
the average line-of-sight terminal-to-terminal distanuc a message has to travel. When N>> L, N is also
the average station-to-station distance a message has to travel. Therefore, from (38), the cos, per area
of the top level is given by

F ru8N I
D 8 iNS, + - (401)S•1L 2 Ti

In order to calculate the Lost 6 the bottom level, we must find the av,;rage terminal-station distance. If
the ar-.a assigned to a station was a circle of diameter L this average distance would have been L/3. In
practical networks with inter-station distance L the average terminal-station distance must be larger, and
we shall write it as ýL/3, where ý is a constant to be determined. The average square root of the
terminal-station distance will jiniiarly he written as ,4/5).vL7, where r is a constant.

A summary of the numerical coefficients characterizing the networks built with the three regu-
lar tessalations at tho top level is given io Tabl: I. Also included in the tabie is the hypothetical, but

S.-impossible, 'best' network, which we. use for normalizing the cost in our figures.
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Table I
Coefficients Characterizing the Geometry of Two-Dimension-Al Networks

S[ square triangular hexagonal 'best'

actual disxnce/line of sight 8 1.27 1 1.10 1.30 I

lires per node __4 6 3 I
area per nole _--- 3-72_ 3-J37 -4 - - 3 --I4

terminal-station distance 1.148 1.05 1.38 I
term1inal-staon d i 1.070 1.026 1.168 1

Let D2 U~e (he cost pe," unit area of the teiminal-slation level, and let T2 he the average tinie
each messaget spends in this level. Since every tmes.sage goes through this bottom level twice, once ait

each end of its path, and sinme each terminal has two half-duplex lines, for sending to and receiving
from the station, respectively, we see that

L 3 2 -L
D2 = 2S" T + kkLLML L (41)

where, as before, M/N 2 is simply our way of writing the terminal density. For a given L the total cost
of ihe two-level network can be obtained from (40) and (41) when minimizing D1+D 2 by choosing T1,
and T"2 subject to T= T 1+T 2. Let x be the ratio between L and N, that is, x is the interstation di.stance
mcasured in the natural distance unit of our networks. The total cost is then

I +jaT)N) •42-/ 42
D,, = NS,,(8+24x/3) + I (IV (42)TV 5.

Equation (42) give,, *he total cost of a two-level two-dimensional networks as a function of x, the ratio

between the Mnt'rstatioa distance and the average distance travelled by a message. Which x will minim-
ize D,,? This best x is easily found numerically, and Fig. 13 shows the cost of two-level syster,.s, in
which the top level was a square, triangular or hexagonal network. The cost of these networks, where
the best x was chosen for each as a function of NIS,1 , was normalized by the cost ol' the hypothetical
'bcst" network d&fincd by Table I, with ius best .v as a function of N 2S,, T.

Once again, we see, that the square network is never the best. When the traffic is bursty the
hexagonal network is best, and whe the traffic is steady the triangular network takes over. Comparing
Figs. !I and 13 we see that in the two-level system the triangular network becomes better than the hex-

agonal one at a smaller value of N2ST than in the one-levcl system. This is because we simply ignored
the question of how messages arrived at the stations in our treatment of one-level networks. In our
model for two-level networks we explicitly took into account the terminal-station distance. If we com-
pare our three networks with the 3ame area per nod& we see that the triangular network has the smal-
lest average terminal-station distance, and the hexa2.onal network has the largest average distance. Thi:s
distance is irrelevant when the traffic is bursty, but gradually becomes important as the traffic becomes
steady, and is the reason for the earlier superiority of two-level triangular over hexaonal networks.

Figs. I I and 13 are both drawn for M- 1024. If we consider a different M the one-level curves
of F;g. II will simply be shifted along the N2Su 1axis, while retaining their shape. The shape of the
curves describing the two-level networks is not invariant when M changes, but the general characteris-
lics were checked for M=A 16, 256, 1024, 4096 and 16384, and they are the same: triangular two-level
neltworks atre good for steudy trallic, hexagonal networks are goo)d for hursty tralfic, and the squure net-
works z:re never the best of the three.
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When the traffic is bursty and A4 is tierge, more than two-levels, will be evcn Miettr, What will
bc the good geomeiry? in the previous section while deriving (36), we sa-W tha' when the traffic is
very bursty eand when bf >,- I th.: network cost is dominated by the kermi nal- station part. it immedi-
ately follows that the best network will be. the triangular, which has the smalles! terminal-statien aver.

di,;dtance when the area per station ýs given. Combining this conclusioni with %'he previous discussion
c- Figs. 11 aad 13 we zre tempted to cornjectuie that whenever the best number of levels, as a furction
of burstinesa is used, the top !cvel shouild have the triangular geometry. 'The top level will either be
stezdy enough, or else it will be just imt. of many levels, and the cost (f all but the top level will muke
oir triangular network (with its hexagonal tiles., the best. For the same reason it is natural to0 Xrsumc
that the top level will always reflect the translationa! and rotational symmetry of the traffic. require-
ments, and th~at ' shall niever htive to use networks like that oif Fig. 12 in the tolp level.

11. Conclusions

We have assumed that the traiffic level and the nec:s~sary performane are specified, and that
the goal is to ft-fill thewc requirements with the least cost. The quality of a given organization is
defined to be, the inverse of the cost of a given organization, suitably normalized. Buistiness is defined
and serves as a natural dimensionless number to characterize the requirements. We also assume that
space is homog.-neous and isotropic: terminal density and traffic requirements are the same everywhere.
This often lends to results that depend only on the average distance travelled by messages, and not on
the distribution of distanceF travelled. The validity of' our re-stlts in the case of irregularity either in
spatial disttzbution or in traffic requirements was not investigated. The cost of communication
resources was modelled by simple power laws.

aby Whcr the traffic is steady, the quality of simple one-level dedicated-channel systems is reasonl-
abygcod, since all channels will be well utilized. When the traffic is bursty, channels are hardly util.

ized an a ignficant gain can be achieved by sharing, even if the technology has no inherent
economies or %cale.

To make shurin% of dedicated channels possibi2., we introdu%.e regular hierarchical structures.
WFor a treatment of hierarchical, organization mixing ALOHIA and dedicated channel see 1191.) Our rcg-
ular structures are obtained by dJividing the terminal population into equal groups, and pla-cing si concen-
trator in the ccnter of eacii. Regular trulti-level hoerarchicAl structures can improve the performance of
bursty systeans sign-ficantly. The optimal structure is characterized by a balance principle, that Sivus theI
ratio of investment in aiuy two consecutive levels. Another Lharacteristic of the optimal regular
Hierarchical structures is that channels are organized in small groups of equal sizes.

in line systems the improvement is obtained by shortening individual lines and frovtn sharing
long high-capacity lines. The pcrformanicc of regular line structures is therefore strongly dependent on

orrplrst~uctures since the itypical line length decreases more slowiy with the number of groups
whe th orainlsare distributed in more dimensions. The question of' the performance of the best

posibe lnes~rctre s aisd utleft open. Wdcnetr that thi; dependence of the csofregular

strctucs n dmenionll illnot besignilicantly improved by any scheme.

The improvement of broadcast systems follaws from spatial ret'se: i.e., different groups of ter-
minals can communicate with their concenitrators by short range transmissions at thc samne time,
therebly sharing bandwidth. The performance ilt' regular broadcast systems is indepe-ndent of dimnen-

sionAity, and very similar to 1hat of the one-diniens'ionttl line systems. For syslems in two or more g
dimensions which ore very disttibuted arnd bursty, deýdicated broa'Jctst channels are thtrel'ore better
than line channels.
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"The problem of vcry bursty distributed networks with dedicated chairnas reduces altrs'%
entirely to the centralized system prublem, since the 'network' part at the top level is only one of very
many levels. Tessalating the plane with hexagonal tiles leads to the best network with both technolo-'•.. Mies, but for different reasons. Of all resuier shapei• tessalating the plakte, the hexaWo¢ has the; sifftllest

average distance to its 'center', and this makes it superior for line networks. Tesmlatimn with hexagons
is good for broadcast networks using omnidirectional antennas b.tuse it results in the Weqt intercOtn
bttween neighboring tiles, and makes the mon-t ,harind pimsible 131.

The best geometry for a retwork with a given• number or levels chanrqes with b¶Jrstinems. but it
seemrs that, for liiie networks, when the best number of levels is used, as a function of btirstinus, tea-
salating. tho plane with hexagonal tiles (and forming a triangulaz network of communication lines) is
usually the best.

Appendix

To simplify ou- formtlias here let us rewrite (IS) and (16) as
: P1:-" PI++ 'Al)

- i (A2)

where

6 - g-l+(/n

S~S -" l'x

Using ': An-.' •nd ••,-b we can solve (AI) and (A2) for P, ard 8, in terms of B,r,t,s,x and M.

When a m ws get

i i Pi - W+•l--- •)
p i - xi- I-s WA)

Ignoring geom(A tr'(c ronAmnti, we also know that the folowing must be true

D! Using WAg) wk e V in tat B) we canmget B as a function of mr and the n onstants I,$ ard x. Isolating
.bthe deptndeui e on r wre ge t thatB is proportimn, to

+ ~Ddfe'rent~ating we 5rid that B is mtniamixed, as a function of r, when

Substitutin 7) irn (W) we get that is proportional to (x'--) and is therefore proportional to
Smt-s)'/(b+t) I . Since the cost is proportional to BbI it follows that when the ber r is used the sys-
wm cost is proportional to
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(MJh+ (AS)

Subutituting WA) in (AD) we also see that when the best r Is used the P, do not depend on i, and they
muct iherefture sati,-Ay P-mmil, While the best number of levels will depend on g, i~e., on the quality

ofthe dies; n procedure -kpplietl to euach level, (All) shows that the system cost, when the best number
ofleveN! is uscd, is independent of g. For larger m we can also approximate (AS) hy m1-111 and see

sionalty an nthe leghdpnec fln otadhardly depends on the capacity dependence of
liecost.

When ,- (Ak3)-(A7) are not valid since x's-t'-1. But the solution is actually simpler. In
this case ive get from (Al) that for every r, the best r-,evel system should have P1=P2- -rnlr
anid from (ADe get that 81-B,.-- -B,-.B/r. Substititting in (AS) and ignoring the geometric
constants Be et

Isolating the r-dependertce of B, it is easy to see thak the best r must satisfy (b+1) r -g ln (m), and that

the system cost when the best number of levels is used is proporti'nal to [In (mn) 16'
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I
On the Advantage of Mixing ALOHA and Dedicated Channels

* Abstract

When many terminals which are distributed in space must share communication resources, we
face the following problem: What scheme can coatrol the access to the communication resources
in an effective way? We shall assume that S, the traffic to be carried, and T, the acceptable
average delay, are specified, and that the goal is to design the least cost system satisfying these
specifications.

Dedicating a fraction of the resources to some source-destination pairs is one very simple access
scheme. Another simple scheme is ALOHA . When we combine the specified traffic and delay
into the dimensionless quantity ST, whose inverse we call ba*rstiness. we find the following: Dedi-
cating separate channels is good when the traffic is steady, but bad when the traffic is bursty.
ALOHA is good when the traffic is bursty, but bad when the traffic is steady. Neither ALOHA
nor dedicated channels are good when the traffic is of medium burstiness.

Mixed-mode systems, using ALOHA in a bottom level and dedicated channels in a top level, can
be good, since they can trade the amount of interference in the random access level against the
number of dedicated channels in the top level. By choosing the right mix, such networks can
become insensitive to the limitations of both access schemes.

I. Introduction

When many terminals which are distributed in space must share communicatior resouces, we
face the following problem: What scheme can control the access to the communication resources in an
effective way? We shall assume that S, the traffic to be carried, and T, the acceptable average deity,
are specified, and that the goal is to design the least cost system satisfying these specifications. Further-
more, we shall assume that only the capacity, i.e., bandwidth, necessaoy has a cost, and that equipment
and transmission power are free.

s m Dedicating a portion of the resource to source-destination pairs is one very simple accessSscheme. Another simple scheme is ALOHA 11,2]. When -we combine the specified traffi., and deley

into the dimensionless quantity ST, we find the following: The dedicated-channel rcheme is good when
bST>> ) (the traffic is then said to be steady) but bad when ST<< 1 (the traffic is then said to be
bursty). ALOHA is good when the traffic is bursty, but bad when the traffic is steady. Neitter ALONA
nor dedicated channels are good when the traffic is of medium bursdiness.

cal It is possible to improve the dedicated channel scheme when the traffic is bursty by a hierarchi-
cal structure that makes sharing of few high capacity channels possible (31. it is also possible to

h improve the ALOHA scheme when the traffic is steady by trading off tranismision range and the neca-
sary number of hops [4]. Is it possible to obtain a good access scheme for medium burstinssu by mix-

I ing the dedicated-channels and the ALOHA schemes? Kleinrock [51 has shown that splitting the
resources and the traffic between two access schemes can never lead to an improvement. Here we show

,that by building a hierarchical system with different schemes used at different levels we can get a
significant improvement at medium burstiness. The first half of this paper applies this idea to systems
in which the sources of messages are many terminals distributed in space, but in which all messages are
destined to one common station. We shall call such systems centralized, and assume that m, the number
of terminals, is very large. In section 2 we introduce the mixed-mode scheme under the most
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favorable conditions. In sections 3 and 4 we relax the assumptions on the interaction between levels
and on the interaction between lower-level ALOHA groups respectively. Secion 5 shows that sharing
the channel by both levels is often better than splitting it. Mixiag dedicated channels and any random
access scheme is discussed in section 6, end section 7 shows tha.t having more than two levels leads to
only a small improvement.

In the second half we discuss systems in which distributed terminals are both the sources and
destinations of all messages. We shall call such systems networks, and assume that the average distance
travelled by messages is much larger than the distance between a terminal and its nearest neighbors.
Section 8 introduces two-level mixed-mode netwowks with the simplest possible routing. Section 9
shows that improving the random access level leads to a relatively small overall improvement, and sec-
tion 10 similarly shows that introducing more than one dedicated level leads to a small improvement.

Throughout thi paper we assume that the communication resource available is a broadcast
channel of capacity C. We shall also assume that the message arrival process is Poisson with a total rate
S•, that message lengths have ar., exponential distribltion; and that all terminals contribute equally to the
overall traffic. This !ast assumption characterizes the case which is hardest to control efficiently. We
choose the data unit so that the average length of a message is equal to 1. This is simply a convenient
normalization, which is equivalent to measuring communication capacity in messages (of an average
le•igth) per second, instead of measuring in bits per second.

If the terminals were co-located in the same place, the best access scheme would be to form a
queue of busy terminals (i.e., those having anything to transmit) and to let them use the full bandwidth
available one after the othev. Forming one queue is much better than giving each terminal a fraction of
the bandwidth, and letting each terminal queue its own messages [6]. When terminals are distributed
and cannot form one queue without some investment in =oordination and control more bandwidth will
be necessary. Assuming that S and T are given, we define the quality [71 of an arbitrary access scheme
as the inverse ratio between the capacity necessary when using this scheme and the capacity necessary
when using the best possible scheme, in which messages form one queue and share one channel. When
messages arrive independently and their lengths are exponentially distributed, this best scheme is the
M/M/I I queue, in which we have CM/Ml-S + I/T.

2. The 'No Interference' Case

Given our broadcast channel, let us build a two-ievel hierarchical system by dividiig the latgo
number of terminals into R equal groups, and by giving each group a repeater. Each message will go
from its terminal to its repeater, and from the repeat.r to the station. The terminal-repeater (bottom)
level will have a larje terminal population, possibly bursty, while the number of repeaters will, hope-
fully, be small, with enough traffic going through e.Ach for the repeater-station (top) leve; to be steady.
It is natural, therefore, to suggest using ALOHA for the terminal-repeater level, and using dedicated
channels for the repeater-statior level.

Using ALOHA for the bottom level is desiable for other reasons too. For exampie, because
no explicit ¢ontrol is exercised over transmission, ALOHA is eapecially good Tor mob;le termia's and
for situations where the number of potentially active terminals is much greater than the actual number
active at any moment.

In order to model ,his two-level mixed mode centralizud system, shown in Fig. 1, we shall start
' with the following assumptions (the words in italics will serve as names for the assumptions):

(1) channel sharing: The Wontmvnicstion medium is a broadcast channel, anc6 both levels (terminal-

repeater and repeater-station) may, use the full bandwidth.
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"STATION
N RIPEATERS WSING
DEDICATED CHANNELS

** TO COMMUNICATE
WITH STATION

0 0 0 0 0 0 0 0 0

AN 'INFINITE' POPULATION OF TERMINALS, DIVIDED INTO R GROUPS.
EACH GROUP USES ALOHA TO COMMUNICATE WITH ITS REPEATER,

Figure 1. Two-Lvel Mixed.Modm Broadast Systama.

(2) spatial reuse: The terminal-repeater communication will be done using the ALOHA scheme.
* Each of the R groups car, use the entire bandwidth to communicate with 'its' repeater and there

will be no interl'crencc between transmissions of the terminals in different groups. That Is, the
terminals in each group will be heard by exactly one and the same repeater.

(i) transparent bottom: Bottom-level transmissions have no influence on top-level transmissions.
Each repeater will use a dedicated subchannel whose capacity is equal to I/R of the total avail-
able capacity for its communication with the station.

(4) A repeater cannot listen to its terminals while it is transmitting to the station.

(5) no interference: A repeater's capacity to listen to its terminals wiIl not be bothered by any of the
other repeaters transmitiin, to tne station 181.
The throughput-delay performance of the ALOHA schemes is not described by a simple anr- t

lytic expression [2]. For simplicity we model the delay T in an 'infinite' population ALOHA system

carrying a traffic S on a channel whose bandwidth is C by T- - . This is a simple two-para---ter
C -- eS7

approximation, that reproduces the known behavioc of (unslotted) ALOHA when S-0. ard the known
behavior of (slotted) ALOHA when S/C-l/e. For a similai three-parameter approximation see I5L.

In our two-level scheme, if a terminal is trying to transmit to its repeater while the repeater is
• ' +" ""transmitting to the station, the terminal will not be. successful, and will have to try again, To minimize

the wa, teful effect of these bottom-level failures the two levels should be slotted and synchronized.
This means that dedicating subchannels in the top level must be done ty Time Division Multiple.

,- * Access (TDMA). Despite the fact that TDMA must be used, we shall describe the delay in the top
level by the FDMA formula, which is both simpler and more similar to the M/M/l type formula we
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use for delay in ALOHA systems,

When both levels are thus slotted and synchronized, the effective capacity available to each ter-
minal group will be equal to C-SIR, since S/R of the available'capacity is used by its upper level
repeater. The load on each lower level ALOHA system accessing a -iven repeater will be SIR. The
average time T a message will spend in the system is therefore

R +1
C-S (C-S/R)- eS/R

where the first term is the time spent in the too level (repea.er* station) ard the seco, nd is the, time
spent in the bottom level (terminal-repeater).

With (i) giving the total time in system, we can now ask what is the optimal number of
repeaters. Minimizing Twc get

Rotpima,, -4 j((l+e)S i-(Tf+e)S(C-S) (2)

With this optimal R we get for T

TminimaI - (I +,( )S (3)

From (2) we can see that when S is very small, the optimal R is almost zero. 'his occ.r, because the

two-level structure is worse than the one-level ALOHA when S-0. The optimized R will try te com-
pensate for this by driving to zero the time spent in ,he top ievei. We can also get from (2) that the
largest optimal R is 3.95, obtained when S/C-.944. In practice, R must be an integer greater than one.

Equation (3) gives T as a function of S and C. The quality can be calr,•lated by comparing C
with the capacity necessary in an M/M/l scheme for the same S arid T. That is, Q- (S+I/T)/C Fig.
2 gives the quality of the two-level structure with the optimal R (which is not necessarily an integer).
The section of the curve in which the optimal R is smaller than I is not drawn. Also plotted iý the
quality of the two-level structure, when Tis given by (I), and when R is fixed at 2, 3, and 4. For com-
parisoo, the figure also gives the quality of ALOHA and the quality of FDMA with tn' i024 terminals.

We see that a two-level system can fill in a large portion of the 'chasm' left betw-!n ALOHA
and FDMA. This chasm is an 'infeasible' region when only ALOHA and FDLMA are 2onsidered. When
the number of terminals grows, FDMA will move even further to the rign', but ALOHA .ond our two-
level scheme will not be mod!tied (both of these already assume an infinite population of terminals), so
the relative gain achieved by the two-levei hierarchy over both ALOHA and FDMA will be even
greater.

This seems almost too good to be true! In the following sections we shall reexamine our
assumptions and see how relaxing them will modify and degrade the result.

3. The 'Full Interference' Case

Some 3trong assumptions were made in the last section to the effeci that both ierminals and

repeaters can use the same broadcast channel, with minimal interference. Considei first the assump-
Sl tions of 'transparent bottom' and 'no interference'. These assumptions are reasonable if all the termi-

nals are far from the station, for example if they are spread around a ring with the station ;n the mid-S. die. but if there are terminals close to the station, more interference may occur. Transmissions from a
terminal situated near the station to its repeater may interfere with repeater-station ýommunication, and
transmicsions from one repeater to the station may interfere with transmissions fror, terminals to
another repenter.
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Even if the geometry alone is not enough to justify the wssumption of transparent bottom, there
are other good reasons to consider it valid. Since we expect to have few repeaters, they may be expen-
sive and sophisticated. We shall assume now that repeate .. e powerful and sophisticated enough to
be perf ;ctly captured by the station in the presence of bottom-level transmissions. The top level will
never 'see' the bottom level, and this is the reason for the name 'transparent bottom'.

The assumption of perfect capture answers some of the problems raised at the beginning of the
section. To model the effect of the other problems, we shall modify the 'no interference' assumption
and assume that a repeater cannot lister, io its terminal whenever any of the repeaters is transmitting to
the station. Calling this new assumption 'full interference' 181, vwe shall use tt as a worst case estimate
fnr the interference between repeaters and terminals. With the full interference assumption, the
effective capacity available to each terminal group is C-S, and instead of (1) we have for T the follow-
ing expression:

T - + 1 (4) :
T "-S (C-S)- eSIR

The optimal R is given by

eS +leS(C-S) (5)
C-S

and Twith this optimal R is given by

T= C- -- -V7T-SJ)

Rg. 3 shows the quality of the two-level hierarchy under the 'full interference' assumption. A
significant part of the 'infeasible' region is still filled, but many more repeaters are nece•sary in order to
achieve this. From (5) we see that as S-C, R--,o. The quality in Fig. 3 is given for optimal R, and
f3r R fixed at 2, 4, 6, 8, 16 and 32. For comparison Fig. 3 also includes ALOHA, FDMA with 1024
Sterminals, and the two-level 'no interfcrence' case of the previous section with optimal R. In both
curves with optimal R only the portion with R > I is drawn. They start at the same point becicuse when
R-I the 'no interference' and the 'full interference' assumptions are identical.

4. luteracting ALOHA Subsystems

Spatial reuse is another strong assumption made in section 2: each repeater will be heard by 'its'
receiver and by no other receiver, Is this a reasonable requirement? We do not mind installing a few
sophisticated repeaters but the many terminals should be cheap and simple. These terminals may be
mobile or unattended and they will not necessarily know where they are or where their repeatei may be.
Even if each terminal had a directional antenna or an adjustable output power, it might tot have the
information necessary to control them. Let us assume that all terminals have the same power and an
omnidirectional antenna.

Consider a divi.ion of the plane into a set of equal polygons: In the 'middle' of each we place a
repa~er. Assume the terminals are uniformly placed over the plane. We wIsh to guarantee that a ter-
minta will be heard by its nearest repeater. If the only factor that determines reception is power at the
receiver, we must give each terminal enough power for the worst case (when its distance to the nearest
repeater is maimal). We shall assume that whenever two terminals have enough power to be heard by
the swme repeater, the resulting interference will destroy both messages, that is, there is no capture ofthe terminals' transmissions. Becaus, ever) terrninal is given enough Ipower for the worst case range,

some terminals will be heard by more than one repeater. The assumption ol no interaction between
terminal groups must, therefore, be modified.
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17,

Let us stress once again ihat we do not exi licitly treat the question of transmission errors.
Instead of discussing the probability of successful reception and its dependence on various parametets
we use the following simple model: A transmission is alw.-ys received correctly if its source is within
range of the destination and if there is no interference at the destination. lnterference is caused by any
other transmission within range of the Oestination. The range dep'2ndence of a successi'ul reception is
modelled as a step-function. When t-erc is no interference, a transmission will always be successful if
the distance to the destination is less than the range, and will never be successful if the distance is
more than the range.

Le A i be the area covered by the any group of terminals, intended to he heard by one
repeater. Let A2 be the area covered by those terminals which are actually heard by the repeater. In
any safe design we must have A 2> A 1. Let r be the ratio A 2' i. r will obviously depend on the shap.,
of the cells around the repeater and on the terminal's power. What is the effect of the number o!
repeaters on r? A simple geometric argument leads to the following conclusion: If we change the
number of repeaters and the size of their cells, hold fixed the shape of the cells and adjust the
terminal's power to get the same power at the repeater in. the worst case (which is whc.r, the terminal is
as far as it can be from the nearest repeater) then r will stay the same.

For example, take the case of a plane divided into identical reg,.;pr hexagons. Let uw give every
terminal exactly the power necessary, on the average, to reach the conter of a hcxaion from its ver-
tices, without any margin of safety. In this case r will be the ratio betweer the area of a circle and the
area of an inscribed regular hexagon, i.e., r-1.209 . If we wish !o guarantee thati each terin;nal can
reach m=re than one repeater the transmission range must be equal to the (worst cas,!) iter-repeviter
distance. in this case r wi!l be equal to 3.627.

For a given shape of cell and power adjustment policy, we have therefort. a set of Interacting
ALOHA systems, where the amount of interaction does not depend on the number of repeaters. A
simple argument, like that used to find the maximum utilization of slotted ALOIA syn;tem [91, leads to
the following: The maximum utilization of each ALOHA system consisting of a repeater and itc termi-
nals will be degraded by the interference of its neighbors, and is equal to I/re,

Modifying (4) we get for our present two-level system
R I()

7' -S (C-S)-erS/R

The optimal R is now given by

R lers + 1JerS(C-)

and Twith this optimal R is

T= c---~ (C )±I
Fig. 4 shows the quality of the 'full interference' case when interaction among different ALOHA sys.
tems exists. r the coefficient of interaction, takes there the values 1,2,4 and 8.

In general, with more interaction, we shall be able to achieve a lesser portion of the infeasible
region, and more repeaters will be needed. But having neglected the cost of repeaters, we should cer-
tainly not allow their number to grow without limit. Another problem with large R is that we have

j assumed that the terminal population is inlinite. But when R becomes comparable to our actual
number ol'iernminals, the oitc-lcvl II)MA will, 4)1'course, b. better than this two-level organizalion.
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If a tra.,nssion from a terminal can be heard by more than one repeater, the system perfor-
man'ce may be improved by allowing any of the repeaters, which received this trarnmission correctly, to
relay it to the station [101. In that case the message will not have to be correctly received specifically

by its re-_-.ater, and success in reaching any of the repeaters will be. enough. This advantage should be
traded iapinsi the possibility that a message will successfully reach mote than one repeater, and tha' all
these repeaters will send it on. We chall not analyze this idea in any more detail.

5. Sharing or Splitting?

In the previous sections we have introduced several models fov a two-level system in which
both levels share the communication channel. But is this sharing good'? In order to answer this ques-
tion, consider another alheinative:

If we have i communication medium with capacity C, let us assign a portion B3C to the
terminai-repeater traffic and a portion (0-P3)C to the repeater-station traffic. Using R repeaters, and
assuming no interaction among ALOHA subsystems, we get the following equation for 7

R +
_C- S '(1-,6)C -eS/R

We car, now minimize T by choosing both R and G. The minimum T will be obtained when the
following two equations are satisfied:

eSpc-s
PC/3 - Si

These equations can be solved numerically, and Fig. 5 gives the quality of this optimal two-level
channel-splitting organization compared with ALOHA, FI)MA with 1024 terminals Also included are
the channel sharing scheme, in the cases of no interference and full interference. We see that sharing
the channel is signilicantly better than splitting it.

Sharing is superior to splitting in very general circumstances, as the followiag theorem shows:

Theorem 1: Consider a two-level terminal-station communication system using a broadcast channel.
This channel can either be split between levels or shared by both. Assume the chennel-sharing mode
has the following two properties:

(1) lop-level communication is not bothered at all by bottom-level communication, i.e., the bot-
tom level is transparent.

(2) The only effect activity in the top level has on the bottom level is to subtract itself from t0.
capacity available to the bottom level.

Then the channel sharing mode is superior to the channel splitting mode.

Proqf" Let us start with a channel-splitting system carrying aj given traffic and modify it to get a
channel-sharing system that will carry the same traffic with a smaller delay. When the new top level is
active At use:, all the available bandwidth. Its transmission time will eherefore he shorter than the
transmission time in the channel-splitting system. By appropriate saling %nd adjustment of' the
transmission policy in the top level we can ensure it will have an equal or shorter waiting time, and that
it w;il utilize the same fraction of the total communication resource as did the old top level. The delay
in the new ;op level will therefore be smaller than the delay in the old top level. Since the oNi top lcvcl
must havv been less than fully utilized, some of the capacity assigned to it in the channel-splitti'ag
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organization ,nd made unavailable to the bottom level was left idle. In the channel-sharing system
everything that ij not actually used by the top level is tvailable to the bottom level, The new bottom
level has therefore more capacity, and the delay in it will be smaller. We this have that the total delay
in the channel-shi.ring system is smaller than the delay in the channel-splitting system.

0

Are the assumetions used in proving theorem I reasonable? The first is simply the assumption
of 'transparent bottom', introduced and justified earlier When the two levehi are synchronized, the
total capacity available to the bottom level will be reduced exactly by the amount of activity in the top
level. But the assumption that the delay wi'l simply depend on this reduced capacity ignores the details
of the occurrences following a transmission failure (for example, the retransmission policy and its
influence on delay). The second assumption is thus more a device to approximate and simplify the
behavioi' of real systems than a direct description of them. It is a natural extension of another device
we have used consistently: the assumption that the total offered traffic in an ALOHA system is a Pois-
son process.

The simple model of the influence of the top level on the bottom level, which is assumed in
theorem 1, has been used systematically in earli.ýr sections of this paper. As a different example of the
benefit of sharing, let us see the improvement possible when dedicated broadcast channels are used.

Assume we have n. terminals and form a two-level system by splitti:-g them into P, groups with
P 2 terminals each. If dedicated channels are used at both levels and there is no interference between
lower-level groups we have

P, P 2T +=
T",(' - S C2 - S/P,

If the total communication capacity we have is C', the task of designing the best system can be formu- 1
lated thus: Minimize Twhen S is given by choosing P, and P: subject to PIP2 = m, and by choosing C'.
and C2  subject to ('C + (C, C The constrained minimum is achieved when
CI - (C+S)/2, C2 - (C-8)/2 and

P - [ I + -

and the resulting minimum T for a two-level dedicdted channel scheme is given by

T 4S + (7)
(C-S)

2  (1-S

What will be the system performance if the channel is shared between levels? To analyze this ci,se we
shall assume that the bottom level is transparent and can detect its failures immediately. The lower
level uses the empty slots left by the upper level in a round-robin fashion. The total delay for a system
of P, groups of P 2 terminals each will modelled by

P, P2T- +Z- (8)C- S (C 7-S?-S/P1

The first term is the delay in the top level, consisting of P, dedicated subchannels. The second term is
the delay in each one of the bottom-level subsystems, each of which is carrying a traffic of SIP, over
P 2 dedicated subehannels, C. -- S is the capacity available to every one of the bottom-le'vel systems.

j The Tof (8) will be minimal when

7
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and the delay is then given by
T- S (9,-m{)

(C-S), C-S
Comparing (9) with (7) we see that we gain a factor of at least 2 by going from a two-level channel-
splitting scheme to a two-levol channel-shmring Fcheme. Comparing (9) to the delay in the one-levei

scheme. given by T- -ý--- , we see that the two-level channel-sharing scheme is better that the one-

level scheme as long as P, -s smaller than m.

6. Mixing with a General Random.Access scheme

The fhannel-splitting curve in Fig. 5 shows the power of the two-level mixed-mode idea even
in its simplest form: by introducing intermeiiate repeaters and choesing their number we gain a
significant improvement over both the one-level ALOHA and the one-level FDMA. By choosing the
number of repeaters, we can make sure that the dedicated channels are not underutilized and that we
do not have ALOHA systems that are too heavily loaded.

Retracing our steps so far, we can see two ideas that improve the mixed-mode organization
even more: If top-level transmission can be perfectly ca•,tured in the presence of bottom-level transmis-
sion then both levels should share the channel, i:nd we get the 'full interference' case. If the interac-
tion between levels is minimal then the performance is even better, ind the 'no interference' model is
then appropriate.

Fig. 6 repeats some of the curves of previous sections ,nd also includes the two-level ALOHA
scheme of [4]. We see that two-level ALOHA offers little :.,iprovement over the tmo-leve! mixed-
mode scheme, even though the two-level ALOHA was modelled with the best possible assumptions
regarding the interaction between levels. It can be shown that the three-level ALOHA offers even less
improvement 14]. We thus reach the conclusion that if you were to design a system for a given ST
where neither one-level ALOHA nor FDMA perform well, you should almost always use a two-level
mixed-mode system, and only rarely (i.e., for a small range of ST around I ) should you use two-level

ALOHA. Intuitively, a message should (.almost) never have to face contention systems twice on its way
to its destination: if contending once is not enough to reach the destination, the rest of the way Fh-''jld
consists of dedicated paths.

The dedicated-channel scheme can be improved by a multi-level organization that uses dedi-
cated channels at all levels [3]. Even with the best number of levels, the cost of a mult.-level
dedicated-channel scheme grows with the number of terminals. The raixed-molde scheme presented
here already assumes the population of terminals is 'infinite', and its cost is independent of the number
of terminals. A hierarchical organization mixing modes is therefore better, when the number of termi-
nals is large, than a hierarchical organization using dedicated channels only.

Will the analysis presented so far be useful if we have the option of using Carrier Sense Multi-
pie Access (CSMA) or any other mandom access that is better than ALOHA'?

.1. .We shall describe a general random access scheme by
S~I

T c-s/U

L • where U is ýts maximum utilization. If U is greater than lie the random access scheme will be better
than ALOHA, and thu region (in the Quality versus ST plane) left infeasible will become smalle: But
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there still wilt be a region that is infeasible if we consider only FDMA and the liven random access

scheme, and the two-level mixed-mode scheme can help fill this infeasible region.

Let us divide the gap betwcen .367 (the maximum utilization of ALOHA) and I (the max-
imum utilization of MIMI I into four equal parts, and consider general random access schemes where
U (the maximum utilization) is equal to .526, .684 and .842. Figures 7, 8 and 9 show the quality of the
one-level and the two-level schemes, with this set of' values for U. The mixed-mode curves were
obtained from the formulas of this chapter by substituting I/U for e. The two-level random access
curve was obtained as follows:

Let us assume that the total offered traffic G and the throughput S are related, in a general ran-
dom access scheme with m terminals, by

S ~ I _ _ý G H1m (10)
The maximum utilization (i.e., the maximum SfC) of this system will be obtained when aG/C-I, and
is equal to

-1 (11)

Equation 0 1) has its maximal value when m-2, and the best two-level system will therefore, once
again, have two repeaters. Since we have denoted the maximum utilization of an 4infinite population'
system by U we must have a - Il~e . In analogy to (4.4) we can, therefore, model the delay in a
two-level mixed-mode system by

T C- 2aS +(C-G/2)-S12U

The first term is the delay in the repeater-station level, which has a maximum utilization of 112a, as
obtained from (11). The second term is the delay in each one of the terminal-repeater subsystems,
where G is given in terms of S and C by (10) with m-=2 ,( This very simple model for a two-level
random-access system should not be applied when U> 2/e-.736, because the calculated maximum
uti~ization of a two-terminal system will then be greater than one!)

From Figures 7 , 8 and 9 we see that the conclusion formulated earlier for ALOHA systems
actually applies to randomi access systems in general: two-level mixed-mode systems fill a significant
part of the infeasible region. While our model for a system with two levels of random access may be
considcred too crude, it seems to say that two levels of random access do not offer a significant
improvement, and are almost dominated by the two-level mixed-mode systems.

7. Are Three Levels Ever Necessary?

If two-level mixed-mode systems are good, would three-level systems be better? Consider, for
example, a system consisting of one ALOHA level as the bottom level, and two dedicated levels on
tops.

* Despite the fact that every message takes two hops in the dedicated levels we shall assume that
only one hop, the longer one, influences other repeaters, and for this influence adopt the 'full interfer-

- . ence' assumption. If the two dedicated levels do not share bandwidth, but the bottom level shares with
both of them, we can write for the delay in this three-level system

79



OUALITY

p

Z m

33



I-~

ul w

01

zI
LSi

x U
>- 0 AIAJfl

_j1

1' N 81o



QUALITY

I 9!

•o \,I

I "

F ii;

i mX

. m

* b7



T- 4S + 44W +
(C -S) 2  (C- S) VCS-erS/R

*The first two terms are the delay in the dedicated !evels when we have R repeaters, obtained from (7).
The third term is the delay in the ALOHA level, and r is the interaction ratio.

If we assume that the dedicated levels share ,.,: channel we can use for them (9), and the delay
in this three-level organization is

s + + IT- (C-S)2  C-S (C-S)-erS/R (13)

For a given C and S we can, in both (12) and (13), search for R, the number of repeaters, that will
minimize T

Fig. 10 shows the quality of the two-level and the three-level mixed-mode schemes, when there
is no interaction between ALOHA subgroups (i.e., r-0) and the optimal number of repeaters was
chosen in each as a function of burstiness. The three-level scheme was drawn only when it is better
than the two-level scheme. Ilaving three levels results in no noticeable improvement if the two dedi-
cated levels split Lhe channel and results in a small improvement if the two dedicated levels share the
channel. The reason for this small improvement is clear: going from one dedicated level to two dedi-
cated levels leads to a significant improvement only when the traffic is bursty and the number of
repeaters is large. But in our two-level mixed-mode scheme the number of repeaters is large only when
the traffic is steady, so adding a second dedicated level cannot lead to any dramatic improvement.

When we have interaction between the ALOHA groups, the number of repeaters becomes large
earlier, i.e., when the traffic is bursty enough to make two dedicated levels better than one. Figures 11,
12 and 13 show the quality of the three-le\ol mixed-mode scheme when the interaction ratio r is equal
to 2, 4 and 8. The three-level scheme in which the channel is split between the two dedicated levels
was actually plotted in all three figures, but becomes noticeable only when r>4.

We see that introducing three levels improves the two-level performance significantly only
when the interaction between ALOHA groups is very large. Even then, the gain achieved in going
from two to three levels is much less than the gain achieved in going from one to two levels. When
the interaction between ALOHA groups is strong, it may be unreasonable to ignore thQ interaction
between repeater groups in the middle level. However, such an interaction- free division into groups
was assumed in deriving (7) and (9), which form the basis for (12) and (13). Hence our thTee-level
results are likely to be too optimistic. In reality, a three-level mixed-mode scheme will achieve an even
smaller improvement over the corresponding two-level mixed-mode scheme than our figures show.

8. Two-Level Mixed-Mode Networks

In networks, i.e., when ooth sources and destinations are distributed, we have & situation simi-
lar to the one we saw earlier for centralized systems: it is easy to organize and to control (if any control
is neccssary) communication systems that are either very steady or very bursty, even if they are distri-
buted. It is th, distributed systems of medium burstiness that pose P problem. We saw earlier that a
hierarchical two-level centralized system which mixes dedicated channels and ALOHA in the appropri-
ate 'amounts' can be much better than either of them, for medium burstiness. Therefore, let us now
apply the mixed-mode idea to networks. We shall discuss in detail only one-dimensional networks, but

• -" expect our major conclusions to be valid for two-dimensional networks too. Denote by N the average
distance travelled by messages, and by S, the rate of traffic originating in a unit length of the network.
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Let us create a, mixed-mo~de network to tierve a one-dlimerisionraI system by the following pro-
cedure. Place stations at fixed inteirvals equal to L. Let eve!y message go frcrm its originatir~g terminal
to the rnetrest station, 'hen ovcr the 'station- network' to the station nearest its destination, and finally
from that station to the destination itself. The connections between stations will be specified later.
Dedicateo broad.,at channislIr wili ht, usedi for station-station communicatien, and ALOHA will be used
for terrnipal-stction communication, When analyzing the mixed-mode network we shall assume that
the number of terminals per station is very largc, this being the worst case for random tsccesj. But
when comparing with dedicated-channel networkt we shall assumre a set of equally spact-d to.rm],nals, Ml
occupying any viection of the network wit'h length N.

What d'stance is :ravelied by messages on tile station-station level? Consider a message that
has to travel a ditance X_ from source terminal to destination terminal. The distance it will travel on
the siation-station (top) lovel depends on the location of its source terminal within the station area, but
when averagin,, over all possiole starting locations we get:

Lemma: The uverage static n-sta 6on distance travelled by messages wihose termainal-terminal distemce is
X', and whose staring point is uniformly distributed, is 31-io equal to A'.

Proof. A' can be written as X' - nL + Y, where ns is a positive integer, L is the inter-station disiance, and
64 Y/<L. Let us paramn-?terize All possible sutartirg positionm within at given statien by t. wiicre
-L/2 < i< L!'2 .The distance. travelled by a rncssa~'c or. thc station-station level is AL, where A is
the integer nearest to (X+W)L. It follows that

Iif -- L/2?< I< Y-- L12
A.j+I if i~~ < i < 0.2

"rhe average distance travelled o~n the station-station level ;s lheleforc

n(L-)+(+DY- niL4 Y - X'

It follows that the average station-station distance tra%-,!lcd, by ?II messages is equal to N, the average
distan.-e ietwecn sourcr terminrid and destirationt terminal. This lemmia (Ic ,s not hold fov two,
dimen~sional networki, btitt whe.neve. N» L" we have m~at N ii ~i good apIproxiniation to the ~eao:me
statior.-statior. distance travel led.

Le, us assume that messages originating -at one 3t~tion will be heard ait It nc.arest neig~hbors
only, (one on each side.) What is the bandwidth necessary for such a one-level dtdieatcd-chonnel rnet*
wok-k? What is A good policy for creati~ng c~nd ullocatring dedicated channeL'"' Once lye define nur chen-
nels, by defining traffic streams that can be transmittrAd independently, the overai; bandwidth necessary
will depend on the Cipacity each channel needs and on the numbef o( colors ne'zessgry to paint tile
channel so that n-, two of the same colo9 inter~cre at their destinatioa~s.

We shdl assume ithat every statiorn has art omnidirecft;.;nal antenna, i.e., that every transmission
propagitcs in both directions Twýý '. nsmissicn poihcies are mten possible: If all transmissions coming
out of a given termina, are queuca together ai~d transmiitted without regard to thr. d~irection of their
d'ctinatiorz, we need at !east thre.c colors to ensure that a terminal doe-s 1iot interfera with transmissions
destined to itself or to its two neighbors. Three are obviou-ily enocgh, because they can be assigned to
tcrminals in a cyclic fashion. If we wane transmission~ from a given terminal to each of its two neigh-

0 bors to be done independen~tly and att the same tin.e, vve riust give e-ich terminal two~ channels. Four
colors are then necessavy and sufficient to en.lt2e each termina! to sepirately send in two directions and
to separetely receive from two directions.
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Let 7T be the average delay suflcred in the top (station-station) level by all nessages, and let
Se the ratio bkiween L and N. l/z iN the average number of hops taken by a message in the top level.
if A1l iralc comiig out of a trtmilal sharc one channel, even though each message is destined only to
one of the neighbors, the traffic on each channel is NSu, and since three colors are necessary, we get
for this case that the necessary capacity for the station-station level is

C - 3NSU + (14)
T, z

If we give each terminal a separate channel for each direction, then the traffic on each channel is
NS./2, and since four colors are necessary in this case we get

U 1 4; ~~Ci - 2Ngu + •--()
• T, z

Comparing (04) and (15), we see that it is better to have one channel per terminal when the traffic is
bursty (NSs T<< liz) and it is better to have two channels per terminal when the traffic is steady
(NST>> l/z). Equations (14) and (15) will also describe one-level dedicated-channels networks if M
is substituted for I/z, where M is the number of terminals in a portion of the network whose length is
N.

Returning now to our two-level ne=works, we must calculate the bandwidth necessary for the
bottom part. Let us first assume that all transmissions in the bottom level have a range exactly equal to

L/2. The total traffic carried by each terminal-station system is then 2LS = - 2zNS. . Despite the fact
thet h~li" of this total traffic is coming from one source - the station - we shall, at first, model the bot-
torn level by a simplN ALOHA system. With our assumption on transmission range there will be no
interact•.n between nei3hboring ALOHA systems, and we can write for C 2, the capacity necessary in
the bottom level,

C 2 - e2zNS, + (16)

where T2 is the average delay for getting through P terminal-station system once.

"et us assume that separate capacities will be assigned to the terminal-station and to the
RVtaion-swtadion subsystems, without sharing. The necessary total capacity can then be obtained by
minimizing C 14.C, subject to T1+2T 2 - T, where 2 multiplies T2 because every message goes through
two terminai-statiovi systems, once at each end of its path.

Combi.iirng (M4) and "l6), for example, we get

C -- JNSu + e2zNS, + - (3/z1)'' + 2'/' (17)

Contibing 15) and ( o) wipl similarly :,.d to

C - 2N,, +... zA'S. + -(4/z)1 '/ + 2 1h I2 18)

The cost of the mi,:ed-rnode ne:wcrk •ar, Lb inirnitned by choosing the best interstation spacing as a
iunrtion of burstiness. When the traffic is bursty the best " is large, and it becomes smaller when the[ I traffic becomes stesdier.

Fig. 14 shots the quality of various one-dimensional networks. The quality of the one-
• I dimensional ALOIIA nurwork is (2NS, 7'+ I)/(2eNSuT+ I). The curve labelled 'one-level dedicated'

shows the 4unlity of ',he one-level organi>:.qion suitable to burst)' traffic (derived from (14) ) when theStraffit' is bursty, and the onm-level organization suitable to :Atcudy traffic (derived from (15) ) when the
traffic is steady. The two curves labklled maixed-mode bursty and mixed-mo(e xteldy were obtained,

S.... ..... ..~. .€ ."-.9
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from (17) and (18), respectively. "he z that minimizes the necessary capacity was chosen for each as a

function of NS. T

It is interest~ng to note that whenever the mixed-mode schemes arc better than ALOIIA, the
steady scheme, obtained from (18). is better than the hursty one, obtained from (17). That is, the top
level will be steady and should be organized accordingly.t

In writing (18), we assumed that even if a message has only a small distance to go it will go to
the nearest station and from that station to its destination. But the destination may be within its range.
and it may be able to receive the transmission meant for the station directly. If such sho't-range
transmissions are received directly at the end of their first hop without retransmission by a station, the
system performance will be improved. Both the average number of hops necessary for messages and
the amount of contending traffic in the bottom level will decrease.

It is evident a priori that this improvement will be important only when the traffic is bursty and
the best interstation spacing is large. We have calculated it explicitly when the distribution of distances
to be travelled !'y messages is exponential. Fig. 15 shows that this improvement to the mixed-mode
network becomes noticeable only when the traffic is bursty enough to make the ALOHA network better
than the mixed-mode network! In other words, this improvemcnt is irrelevant.

An alternative organization for mixed- node networks can be based on the go-forward routing
policy: The first hop of each message will be to the nearest station towards its dest.-vation. The message
will then use the top levqi to get to the last station before its destination, and then again use the bottom
level to reach its destination.

If all transmissions have the same range it must be at least L in this network, and we shall
assume it is exactly L. Therefore we shall have more contending traffic in the bottom level of a go-
forward network than before. However, there will be less traffic using the top level, and fewer hops
will be necessary there. This alternative organization will be worse than the earlier one when the traffic
is steady, and will be better when the traffic is bursty. When the traffic is steady, the interstation dis-
tance will be small, and the gain in the top level will be small, but doubling the contention in the bot-
tom level is very costly. When the traffic is bursty, contention is not a serious problem and the intersta-
tion distance is large, so the gain possible in the top level will be significant.

Fig. 15 shows the go-forward mixed-mode network ( shown only when it is better than the ear-

lier scheme), and we see that it is better only when both are worse than the ALOHA network. Organ-
izing mixed-mode networks on the go-forward principle is never a good idea. We see here once again
that when a mixed-mode network is better than ALOHA and its interstation spacing is properly chosen,
its top level is 'steady'.

In the rest of this chapter when we talk about mixed-mode networks with one dedicated level
we shall always refer to the mixed-mode scheme described by (18), when the best z is chosen as a
function of burstiness in order to minimize the necessary capacity.

9. Improving the Random Access Part

4 Until now we have modelled the terminal-station level by a set of ALOHA systems. But since
half the traffic in each ALOHA system is concentrated in the station it can be coordinated better than in
ALOHA. What will a better terminal-station level contribute to the overall performance of the net-
work?
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Let U be the maximum utilization of each *erminal-station system. We shall model the
mixed-mode network obtained with a general terminal-station access scheme by an equation similar to
(18), where I/U is substituted for e. We nave divided the interval betwecn i/e and I into three equal

parts, and show in Fig. 16 the quaty of a mixed-mode network where U, the maximum utilization of
each terminal-station system, is .367 (ALOHA), .579, .798 and I (M/M/I).

A mixed-mode network built with a belter werminal-station access mode will obviously be
better, hut the improvement is rot dramatic. Fig. 17 shows the ratio between the quality of a mixed-
mo,..- network with a given U and the quality of the mixed-mode network built with ALOHA as the
terminal-station access mode. The curves do not go all the way to the left since they were not drawti
wh-n the mixed-mode network becomes worse than the one-level ALOHA network.

When comparing the quality of two mixed-mode networks it should be noted that the best
interstation distance as a function of burstiness was chosen separately for each. This gives the mixed-
mode networks an internal adjusting mechanism, and explains why improving the utilization of the
terminal-station part never leads to a comparable overall improvement in the necessary capacity. When

usin ALOA fr th terina-station level, we nevetrpush it to its maximum utilization, and therefore

can never, gain a factor of e if we assume an M/M/l terminal-station part. We have a similar conclu-
sion in 141 when discussing puce ALOHA networks.

Can having more than two levels improve the mixed-mode networks? By how much'? We saw
ini [41 thai a pure ALOHA network with two levels is never better than a one-level ALGHA network.
But the argument used there does not apply to mixed-mode networks. A mixed-mode network with
one dedicated level (the station-station level) and two ALOHA levels in the terminal-station part can
lead to an improvement, but not to a large one. The maximum utilizatiorn of two-level ALOHA ;s
.465 141. But even if we hadi a one-hop terminal. station scheme with this maximum utilization it fol-
lows from (18) that it would improve the mixed-mode network by at most 7%. Achieving this utiliza-
"tion hy two hops will, of course, lead to an even smaller improvement.

) 10. Mort than One Dedicated Level?

More than one leve! in the terminal-station random access part does not lead to a significant
improvement. What can we gain by having more than one level in the station-station dedicated part?
What can we gain by having the optimal number of levels in the station-station dedicated part? The
following is a lower bound 171 on the capacity necessary for the station-station dedkated part when the
traffic is steady and wher, tht optimal number of levels is used:

C , - 2NS, + J-[(e/2)!n(4/z)12 (19)

This lower bound is obtained by using regular hierarchical structures [31 to reduce the dependence of
the second term of (15) on lIz, while ignoring the fact that whern traffic is not oursty regular structures
would increase the first term of (15). Combining (19) and (16) we get that the total capacity required
for this mixed-mode network is

• C' - 2NS,(+ez) + ((e/2)ln(4/z) + 21/2 (20)

Fig. 18 shows the quality of a mixed-mode network with the optimal number of dedicated levels and
j with one dedicated level, as obtained from (20) and (18) respectively, by choosing the best z for each.
• o Even though we use an upper bound on the performarre of a dedicated station-station part usin$ the

optimal number of levels we did not gain much over the rmixed-raode network that used only one dedi-
cared level! The reason is familiar by now. Multi-level organizations are especially important when the
network is both bursty and distributed, but this will not occur in our mixed-mode networks, since the
"station-station part will become very distributed (i.e., I/z will become very large) only when the traffic
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is very steady.

Equation (20) can be generalized and will describe any mixed-rnode network with an optimal-
level dedicated station-station part and a one-level random access terminal-station part if U, the max-
imum utilization of the random access scheme, is substituted for Ile. Fig. 19 shows the ratio between

A the quality obtained with an optimal number of dedicated levels and the quality obtained with one dedi-
cated level. This ratio is identically equal to I when the traffic is bursty because I/: is then very small,
and the optimal number of levels is then 1. We see from Fig. 19 that if the random access mode is
better than ALOHA, introducing more than one dedicated level will lead to an even smaller improve-
ment. Only if there is a strong interaction, and the curve with U-.092 cart be taken to represent
ALOHA with an interaction ratio equal to 4, will having more than one dedicated level lead to a more
significant improvement.

I I. Conclusions

ALOHA is good when the traffic is bursty, and dedicated channels are good when the traffic is
steady. Mixed-mode systems, with ALOHA in the bottom level and dedicated channels in the top
level, can be much better than either ALOIIA or dedicated channels when the traffic is of medium
burstiness and the 'arnount' of mixing is properly adjusted. Under reasonably favorable conditions, the
available bandwidth should be shared by the two levels, and not split between them. But even when
conditions are the least favorable, and the channel must be split, the mixed-mode systems are surpris-
ingly good.

Mixed-mode systems in general, and mixed-mode networks in particular, show a certa;n robust-

ness. By the freedom to choose the right mix, the system gains an internal adjustment mechanism, and
will never push any of its two parts until it is very bad. That is, the ALOHA part will never be heavily
loaded and there will never be many lightly utilized dedicated channels. Because of this robustness it is
harder to improve mix-mode networks. Changing the bottom level of a mixed-mode network from
ALOHA to a better random access scheme leads to only a relatively small overall improvement. Intro-

-) ducing more dedicated levels in a mixed-mode network likewise leads to only a modest overall
improvement.
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